| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndmeng | Structured version Visualization version GIF version | ||
| Description: A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fndmeng | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐴 ≈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnex 7209 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
| 2 | fnfun 6638 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → Fun 𝐹) |
| 4 | fundmeng 9046 | . . 3 ⊢ ((𝐹 ∈ V ∧ Fun 𝐹) → dom 𝐹 ≈ 𝐹) | |
| 5 | 1, 3, 4 | syl2anc 584 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → dom 𝐹 ≈ 𝐹) |
| 6 | fndm 6641 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 7 | 6 | breq1d 5129 | . . 3 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ≈ 𝐹 ↔ 𝐴 ≈ 𝐹)) |
| 8 | 7 | adantr 480 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → (dom 𝐹 ≈ 𝐹 ↔ 𝐴 ≈ 𝐹)) |
| 9 | 5, 8 | mpbid 232 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐴 ≈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 dom cdm 5654 Fun wfun 6525 Fn wfn 6526 ≈ cen 8956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-en 8960 |
| This theorem is referenced by: tskcard 10795 hashfn 14393 |
| Copyright terms: Public domain | W3C validator |