Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fndmeng | Structured version Visualization version GIF version |
Description: A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fndmeng | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐴 ≈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnex 6977 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
2 | fnfun 6439 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 2 | adantr 484 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → Fun 𝐹) |
4 | fundmeng 8616 | . . 3 ⊢ ((𝐹 ∈ V ∧ Fun 𝐹) → dom 𝐹 ≈ 𝐹) | |
5 | 1, 3, 4 | syl2anc 587 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → dom 𝐹 ≈ 𝐹) |
6 | fndm 6441 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
7 | 6 | breq1d 5046 | . . 3 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ≈ 𝐹 ↔ 𝐴 ≈ 𝐹)) |
8 | 7 | adantr 484 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → (dom 𝐹 ≈ 𝐹 ↔ 𝐴 ≈ 𝐹)) |
9 | 5, 8 | mpbid 235 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐴 ≈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2111 Vcvv 3409 class class class wbr 5036 dom cdm 5528 Fun wfun 6334 Fn wfn 6335 ≈ cen 8537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-en 8541 |
This theorem is referenced by: tskcard 10254 hashfn 13799 |
Copyright terms: Public domain | W3C validator |