MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmeng Structured version   Visualization version   GIF version

Theorem fndmeng 8779
Description: A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
fndmeng ((𝐹 Fn 𝐴𝐴𝐶) → 𝐴𝐹)

Proof of Theorem fndmeng
StepHypRef Expression
1 fnex 7075 . . 3 ((𝐹 Fn 𝐴𝐴𝐶) → 𝐹 ∈ V)
2 fnfun 6517 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
32adantr 480 . . 3 ((𝐹 Fn 𝐴𝐴𝐶) → Fun 𝐹)
4 fundmeng 8776 . . 3 ((𝐹 ∈ V ∧ Fun 𝐹) → dom 𝐹𝐹)
51, 3, 4syl2anc 583 . 2 ((𝐹 Fn 𝐴𝐴𝐶) → dom 𝐹𝐹)
6 fndm 6520 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76breq1d 5080 . . 3 (𝐹 Fn 𝐴 → (dom 𝐹𝐹𝐴𝐹))
87adantr 480 . 2 ((𝐹 Fn 𝐴𝐴𝐶) → (dom 𝐹𝐹𝐴𝐹))
95, 8mpbid 231 1 ((𝐹 Fn 𝐴𝐴𝐶) → 𝐴𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  Vcvv 3422   class class class wbr 5070  dom cdm 5580  Fun wfun 6412   Fn wfn 6413  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-en 8692
This theorem is referenced by:  tskcard  10468  hashfn  14018
  Copyright terms: Public domain W3C validator