MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmeng Structured version   Visualization version   GIF version

Theorem fndmeng 8952
Description: A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
fndmeng ((𝐹 Fn 𝐴𝐴𝐶) → 𝐴𝐹)

Proof of Theorem fndmeng
StepHypRef Expression
1 fnex 7146 . . 3 ((𝐹 Fn 𝐴𝐴𝐶) → 𝐹 ∈ V)
2 fnfun 6576 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
32adantr 480 . . 3 ((𝐹 Fn 𝐴𝐴𝐶) → Fun 𝐹)
4 fundmeng 8949 . . 3 ((𝐹 ∈ V ∧ Fun 𝐹) → dom 𝐹𝐹)
51, 3, 4syl2anc 584 . 2 ((𝐹 Fn 𝐴𝐴𝐶) → dom 𝐹𝐹)
6 fndm 6579 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76breq1d 5096 . . 3 (𝐹 Fn 𝐴 → (dom 𝐹𝐹𝐴𝐹))
87adantr 480 . 2 ((𝐹 Fn 𝐴𝐴𝐶) → (dom 𝐹𝐹𝐴𝐹))
95, 8mpbid 232 1 ((𝐹 Fn 𝐴𝐴𝐶) → 𝐴𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  Vcvv 3436   class class class wbr 5086  dom cdm 5611  Fun wfun 6470   Fn wfn 6471  cen 8861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-en 8865
This theorem is referenced by:  tskcard  10667  hashfn  14277
  Copyright terms: Public domain W3C validator