MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercoll Structured version   Visualization version   GIF version

Theorem isercoll 15572
Description: Rearrange an infinite series by spacing out the terms using an order isomorphism. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z 𝑍 = (ℤ𝑀)
isercoll.m (𝜑𝑀 ∈ ℤ)
isercoll.g (𝜑𝐺:ℕ⟶𝑍)
isercoll.i ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
isercoll.0 ((𝜑𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
isercoll.f ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℂ)
isercoll.h ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
Assertion
Ref Expression
isercoll (𝜑 → (seq1( + , 𝐻) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹,𝑛   𝜑,𝑘,𝑛   𝑘,𝐺,𝑛   𝑘,𝐻,𝑛   𝑘,𝑀,𝑛   𝑛,𝑍
Allowed substitution hint:   𝑍(𝑘)

Proof of Theorem isercoll
Dummy variables 𝑗 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isercoll.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
2 uzssz 12750 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
31, 2eqsstri 3981 . . . . . . . . 9 𝑍 ⊆ ℤ
4 isercoll.g . . . . . . . . . 10 (𝜑𝐺:ℕ⟶𝑍)
54ffvelcdmda 7017 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ 𝑍)
63, 5sselid 3932 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℤ)
7 nnz 12486 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
87ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → 𝑛 ∈ ℤ)
9 fzfid 13877 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝑀...𝑚) ∈ Fin)
10 ffun 6654 . . . . . . . . . . . . . . . 16 (𝐺:ℕ⟶𝑍 → Fun 𝐺)
11 funimacnv 6562 . . . . . . . . . . . . . . . 16 (Fun 𝐺 → (𝐺 “ (𝐺 “ (𝑀...𝑚))) = ((𝑀...𝑚) ∩ ran 𝐺))
124, 10, 113syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺 “ (𝐺 “ (𝑀...𝑚))) = ((𝑀...𝑚) ∩ ran 𝐺))
13 inss1 4187 . . . . . . . . . . . . . . 15 ((𝑀...𝑚) ∩ ran 𝐺) ⊆ (𝑀...𝑚)
1412, 13eqsstrdi 3979 . . . . . . . . . . . . . 14 (𝜑 → (𝐺 “ (𝐺 “ (𝑀...𝑚))) ⊆ (𝑀...𝑚))
1514ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝐺 “ (𝐺 “ (𝑀...𝑚))) ⊆ (𝑀...𝑚))
169, 15ssfid 9153 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝐺 “ (𝐺 “ (𝑀...𝑚))) ∈ Fin)
17 hashcl 14260 . . . . . . . . . . . 12 ((𝐺 “ (𝐺 “ (𝑀...𝑚))) ∈ Fin → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ ℕ0)
18 nn0z 12490 . . . . . . . . . . . 12 ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ ℕ0 → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ ℤ)
1916, 17, 183syl 18 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ ℤ)
20 ssid 3957 . . . . . . . . . . . . . . . . . . . 20 ℕ ⊆ ℕ
21 isercoll.m . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 ∈ ℤ)
22 isercoll.i . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
231, 21, 4, 22isercolllem1 15569 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ℕ ⊆ ℕ) → (𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)))
2420, 23mpan2 691 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)))
25 ffn 6651 . . . . . . . . . . . . . . . . . . . 20 (𝐺:ℕ⟶𝑍𝐺 Fn ℕ)
26 fnresdm 6600 . . . . . . . . . . . . . . . . . . . 20 (𝐺 Fn ℕ → (𝐺 ↾ ℕ) = 𝐺)
27 isoeq1 7251 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ↾ ℕ) = 𝐺 → ((𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)) ↔ 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ))))
284, 25, 26, 274syl 19 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)) ↔ 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ))))
2924, 28mpbid 232 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)))
30 isof1o 7257 . . . . . . . . . . . . . . . . . 18 (𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)) → 𝐺:ℕ–1-1-onto→(𝐺 “ ℕ))
31 f1ocnv 6775 . . . . . . . . . . . . . . . . . 18 (𝐺:ℕ–1-1-onto→(𝐺 “ ℕ) → 𝐺:(𝐺 “ ℕ)–1-1-onto→ℕ)
32 f1ofun 6765 . . . . . . . . . . . . . . . . . 18 (𝐺:(𝐺 “ ℕ)–1-1-onto→ℕ → Fun 𝐺)
3329, 30, 31, 324syl 19 . . . . . . . . . . . . . . . . 17 (𝜑 → Fun 𝐺)
34 df-f1 6486 . . . . . . . . . . . . . . . . 17 (𝐺:ℕ–1-1𝑍 ↔ (𝐺:ℕ⟶𝑍 ∧ Fun 𝐺))
354, 33, 34sylanbrc 583 . . . . . . . . . . . . . . . 16 (𝜑𝐺:ℕ–1-1𝑍)
3635ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → 𝐺:ℕ–1-1𝑍)
37 fz1ssnn 13452 . . . . . . . . . . . . . . 15 (1...𝑛) ⊆ ℕ
38 ovex 7379 . . . . . . . . . . . . . . . 16 (1...𝑛) ∈ V
3938f1imaen 8939 . . . . . . . . . . . . . . 15 ((𝐺:ℕ–1-1𝑍 ∧ (1...𝑛) ⊆ ℕ) → (𝐺 “ (1...𝑛)) ≈ (1...𝑛))
4036, 37, 39sylancl 586 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝐺 “ (1...𝑛)) ≈ (1...𝑛))
41 fzfid 13877 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (1...𝑛) ∈ Fin)
42 enfii 9095 . . . . . . . . . . . . . . . 16 (((1...𝑛) ∈ Fin ∧ (𝐺 “ (1...𝑛)) ≈ (1...𝑛)) → (𝐺 “ (1...𝑛)) ∈ Fin)
4341, 40, 42syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝐺 “ (1...𝑛)) ∈ Fin)
44 hashen 14251 . . . . . . . . . . . . . . 15 (((𝐺 “ (1...𝑛)) ∈ Fin ∧ (1...𝑛) ∈ Fin) → ((♯‘(𝐺 “ (1...𝑛))) = (♯‘(1...𝑛)) ↔ (𝐺 “ (1...𝑛)) ≈ (1...𝑛)))
4543, 41, 44syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → ((♯‘(𝐺 “ (1...𝑛))) = (♯‘(1...𝑛)) ↔ (𝐺 “ (1...𝑛)) ≈ (1...𝑛)))
4640, 45mpbird 257 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (♯‘(𝐺 “ (1...𝑛))) = (♯‘(1...𝑛)))
47 nnnn0 12385 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
4847ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → 𝑛 ∈ ℕ0)
49 hashfz1 14250 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛)
5048, 49syl 17 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (♯‘(1...𝑛)) = 𝑛)
5146, 50eqtrd 2766 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (♯‘(𝐺 “ (1...𝑛))) = 𝑛)
52 elfznn 13450 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1...𝑛) → 𝑦 ∈ ℕ)
5352adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑦 ∈ ℕ)
54 zssre 12472 . . . . . . . . . . . . . . . . . . . . . 22 ℤ ⊆ ℝ
553, 54sstri 3944 . . . . . . . . . . . . . . . . . . . . 21 𝑍 ⊆ ℝ
564ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → 𝐺:ℕ⟶𝑍)
57 ffvelcdm 7014 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺:ℕ⟶𝑍𝑦 ∈ ℕ) → (𝐺𝑦) ∈ 𝑍)
5856, 52, 57syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑦) ∈ 𝑍)
5955, 58sselid 3932 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑦) ∈ ℝ)
605ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑛) ∈ 𝑍)
6155, 60sselid 3932 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑛) ∈ ℝ)
62 eluzelz 12739 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ (ℤ‘(𝐺𝑛)) → 𝑚 ∈ ℤ)
6362ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑚 ∈ ℤ)
6463zred 12574 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑚 ∈ ℝ)
65 elfzle2 13425 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (1...𝑛) → 𝑦𝑛)
6665adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑦𝑛)
6729ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)))
68 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑛 ∈ ℕ)
69 isorel 7260 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ ℕ)) → (𝑛 < 𝑦 ↔ (𝐺𝑛) < (𝐺𝑦)))
7067, 68, 53, 69syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝑛 < 𝑦 ↔ (𝐺𝑛) < (𝐺𝑦)))
7170notbid 318 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (¬ 𝑛 < 𝑦 ↔ ¬ (𝐺𝑛) < (𝐺𝑦)))
7253nnred 12137 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑦 ∈ ℝ)
7368nnred 12137 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑛 ∈ ℝ)
7472, 73lenltd 11256 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝑦𝑛 ↔ ¬ 𝑛 < 𝑦))
7559, 61lenltd 11256 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → ((𝐺𝑦) ≤ (𝐺𝑛) ↔ ¬ (𝐺𝑛) < (𝐺𝑦)))
7671, 74, 753bitr4d 311 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝑦𝑛 ↔ (𝐺𝑦) ≤ (𝐺𝑛)))
7766, 76mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑦) ≤ (𝐺𝑛))
78 eluzle 12742 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (ℤ‘(𝐺𝑛)) → (𝐺𝑛) ≤ 𝑚)
7978ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑛) ≤ 𝑚)
8059, 61, 64, 77, 79letrd 11267 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑦) ≤ 𝑚)
8158, 1eleqtrdi 2841 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑦) ∈ (ℤ𝑀))
82 elfz5 13413 . . . . . . . . . . . . . . . . . . . 20 (((𝐺𝑦) ∈ (ℤ𝑀) ∧ 𝑚 ∈ ℤ) → ((𝐺𝑦) ∈ (𝑀...𝑚) ↔ (𝐺𝑦) ≤ 𝑚))
8381, 63, 82syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → ((𝐺𝑦) ∈ (𝑀...𝑚) ↔ (𝐺𝑦) ≤ 𝑚))
8480, 83mpbird 257 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑦) ∈ (𝑀...𝑚))
8556ffnd 6652 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → 𝐺 Fn ℕ)
8685adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝐺 Fn ℕ)
87 elpreima 6991 . . . . . . . . . . . . . . . . . . 19 (𝐺 Fn ℕ → (𝑦 ∈ (𝐺 “ (𝑀...𝑚)) ↔ (𝑦 ∈ ℕ ∧ (𝐺𝑦) ∈ (𝑀...𝑚))))
8886, 87syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝑦 ∈ (𝐺 “ (𝑀...𝑚)) ↔ (𝑦 ∈ ℕ ∧ (𝐺𝑦) ∈ (𝑀...𝑚))))
8953, 84, 88mpbir2and 713 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑦 ∈ (𝐺 “ (𝑀...𝑚)))
9089ex 412 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝑦 ∈ (1...𝑛) → 𝑦 ∈ (𝐺 “ (𝑀...𝑚))))
9190ssrdv 3940 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (1...𝑛) ⊆ (𝐺 “ (𝑀...𝑚)))
92 imass2 6051 . . . . . . . . . . . . . . 15 ((1...𝑛) ⊆ (𝐺 “ (𝑀...𝑚)) → (𝐺 “ (1...𝑛)) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑚))))
9391, 92syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝐺 “ (1...𝑛)) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑚))))
94 ssdomg 8922 . . . . . . . . . . . . . 14 ((𝐺 “ (𝐺 “ (𝑀...𝑚))) ∈ Fin → ((𝐺 “ (1...𝑛)) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑚))) → (𝐺 “ (1...𝑛)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑚)))))
9516, 93, 94sylc 65 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝐺 “ (1...𝑛)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑚))))
96 hashdom 14283 . . . . . . . . . . . . . 14 (((𝐺 “ (1...𝑛)) ∈ Fin ∧ (𝐺 “ (𝐺 “ (𝑀...𝑚))) ∈ Fin) → ((♯‘(𝐺 “ (1...𝑛))) ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ↔ (𝐺 “ (1...𝑛)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑚)))))
9743, 16, 96syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → ((♯‘(𝐺 “ (1...𝑛))) ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ↔ (𝐺 “ (1...𝑛)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑚)))))
9895, 97mpbird 257 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (♯‘(𝐺 “ (1...𝑛))) ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))))
9951, 98eqbrtrrd 5115 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → 𝑛 ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))))
100 eluz2 12735 . . . . . . . . . . 11 ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ (ℤ𝑛) ↔ (𝑛 ∈ ℤ ∧ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ ℤ ∧ 𝑛 ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))))
1018, 19, 99, 100syl3anbrc 1344 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ (ℤ𝑛))
102 fveq2 6822 . . . . . . . . . . . . 13 (𝑘 = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) → (seq1( + , 𝐻)‘𝑘) = (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))))
103102eleq1d 2816 . . . . . . . . . . . 12 (𝑘 = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) → ((seq1( + , 𝐻)‘𝑘) ∈ ℂ ↔ (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ))
104102fvoveq1d 7368 . . . . . . . . . . . . 13 (𝑘 = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) → (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) = (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)))
105104breq1d 5101 . . . . . . . . . . . 12 (𝑘 = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) → ((abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥))
106103, 105anbi12d 632 . . . . . . . . . . 11 (𝑘 = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) → (((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) ↔ ((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
107106rspcv 3573 . . . . . . . . . 10 ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ (ℤ𝑛) → (∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) → ((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
108101, 107syl 17 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) → ((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
109108ralrimdva 3132 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) → ∀𝑚 ∈ (ℤ‘(𝐺𝑛))((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
110 fveq2 6822 . . . . . . . . . 10 (𝑗 = (𝐺𝑛) → (ℤ𝑗) = (ℤ‘(𝐺𝑛)))
111110raleqdv 3292 . . . . . . . . 9 (𝑗 = (𝐺𝑛) → (∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) ↔ ∀𝑚 ∈ (ℤ‘(𝐺𝑛))((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
112111rspcev 3577 . . . . . . . 8 (((𝐺𝑛) ∈ ℤ ∧ ∀𝑚 ∈ (ℤ‘(𝐺𝑛))((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)) → ∃𝑗 ∈ ℤ ∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥))
1136, 109, 112syl6an 684 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) → ∃𝑗 ∈ ℤ ∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
114113rexlimdva 3133 . . . . . 6 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) → ∃𝑗 ∈ ℤ ∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
115 1nn 12133 . . . . . . . . 9 1 ∈ ℕ
116 ffvelcdm 7014 . . . . . . . . 9 ((𝐺:ℕ⟶𝑍 ∧ 1 ∈ ℕ) → (𝐺‘1) ∈ 𝑍)
1174, 115, 116sylancl 586 . . . . . . . 8 (𝜑 → (𝐺‘1) ∈ 𝑍)
118117, 1eleqtrdi 2841 . . . . . . 7 (𝜑 → (𝐺‘1) ∈ (ℤ𝑀))
119 eluzelz 12739 . . . . . . 7 ((𝐺‘1) ∈ (ℤ𝑀) → (𝐺‘1) ∈ ℤ)
120 eqid 2731 . . . . . . . 8 (ℤ‘(𝐺‘1)) = (ℤ‘(𝐺‘1))
121120rexuz3 15253 . . . . . . 7 ((𝐺‘1) ∈ ℤ → (∃𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
122118, 119, 1213syl 18 . . . . . 6 (𝜑 → (∃𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
123114, 122sylibrd 259 . . . . 5 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) → ∃𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
124 fzfid 13877 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → (𝑀...𝑗) ∈ Fin)
125 funimacnv 6562 . . . . . . . . . . . 12 (Fun 𝐺 → (𝐺 “ (𝐺 “ (𝑀...𝑗))) = ((𝑀...𝑗) ∩ ran 𝐺))
1264, 10, 1253syl 18 . . . . . . . . . . 11 (𝜑 → (𝐺 “ (𝐺 “ (𝑀...𝑗))) = ((𝑀...𝑗) ∩ ran 𝐺))
127 inss1 4187 . . . . . . . . . . 11 ((𝑀...𝑗) ∩ ran 𝐺) ⊆ (𝑀...𝑗)
128126, 127eqsstrdi 3979 . . . . . . . . . 10 (𝜑 → (𝐺 “ (𝐺 “ (𝑀...𝑗))) ⊆ (𝑀...𝑗))
129128adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑗))) ⊆ (𝑀...𝑗))
130124, 129ssfid 9153 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑗))) ∈ Fin)
131 hashcl 14260 . . . . . . . 8 ((𝐺 “ (𝐺 “ (𝑀...𝑗))) ∈ Fin → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℕ0)
132 nn0p1nn 12417 . . . . . . . 8 ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℕ0 → ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ∈ ℕ)
133130, 131, 1323syl 18 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ∈ ℕ)
134 eluzle 12742 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1)) → ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ≤ 𝑘)
135134adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ≤ 𝑘)
136130adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺 “ (𝐺 “ (𝑀...𝑗))) ∈ Fin)
137 nn0z 12490 . . . . . . . . . . . . . . . 16 ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℕ0 → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℤ)
138136, 131, 1373syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℤ)
139 eluzelz 12739 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1)) → 𝑘 ∈ ℤ)
140139adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝑘 ∈ ℤ)
141 zltp1le 12519 . . . . . . . . . . . . . . 15 (((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) < 𝑘 ↔ ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ≤ 𝑘))
142138, 140, 141syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) < 𝑘 ↔ ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ≤ 𝑘))
143135, 142mpbird 257 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) < 𝑘)
144 nn0re 12387 . . . . . . . . . . . . . . . 16 ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℕ0 → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℝ)
145130, 131, 1443syl 18 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℝ)
146145adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℝ)
147 eluznn 12813 . . . . . . . . . . . . . . . 16 ((((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝑘 ∈ ℕ)
148133, 147sylan 580 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝑘 ∈ ℕ)
149148nnred 12137 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝑘 ∈ ℝ)
150146, 149ltnled 11257 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) < 𝑘 ↔ ¬ 𝑘 ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗))))))
151143, 150mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ¬ 𝑘 ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))))
152 fzss2 13461 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(𝐺𝑘)) → (𝑀...(𝐺𝑘)) ⊆ (𝑀...𝑗))
153 imass2 6051 . . . . . . . . . . . . . 14 ((𝑀...(𝐺𝑘)) ⊆ (𝑀...𝑗) → (𝐺 “ (𝑀...(𝐺𝑘))) ⊆ (𝐺 “ (𝑀...𝑗)))
154 imass2 6051 . . . . . . . . . . . . . 14 ((𝐺 “ (𝑀...(𝐺𝑘))) ⊆ (𝐺 “ (𝑀...𝑗)) → (𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗))))
155152, 153, 1543syl 18 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘(𝐺𝑘)) → (𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗))))
156 ssdomg 8922 . . . . . . . . . . . . . . 15 ((𝐺 “ (𝐺 “ (𝑀...𝑗))) ∈ Fin → ((𝐺 “ (1...𝑘)) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗))) → (𝐺 “ (1...𝑘)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑗)))))
157136, 156syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((𝐺 “ (1...𝑘)) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗))) → (𝐺 “ (1...𝑘)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑗)))))
1584ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝐺:ℕ⟶𝑍)
159158ffvelcdmda 7017 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ 𝑍)
160159, 1eleqtrdi 2841 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ (ℤ𝑀))
161158, 148ffvelcdmd 7018 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺𝑘) ∈ 𝑍)
1623, 161sselid 3932 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺𝑘) ∈ ℤ)
163162adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑘) ∈ ℤ)
164 elfz5 13413 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺𝑥) ∈ (ℤ𝑀) ∧ (𝐺𝑘) ∈ ℤ) → ((𝐺𝑥) ∈ (𝑀...(𝐺𝑘)) ↔ (𝐺𝑥) ≤ (𝐺𝑘)))
165160, 163, 164syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → ((𝐺𝑥) ∈ (𝑀...(𝐺𝑘)) ↔ (𝐺𝑥) ≤ (𝐺𝑘)))
16629ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)))
167 nnssre 12126 . . . . . . . . . . . . . . . . . . . . . . 23 ℕ ⊆ ℝ
168 ressxr 11153 . . . . . . . . . . . . . . . . . . . . . . 23 ℝ ⊆ ℝ*
169167, 168sstri 3944 . . . . . . . . . . . . . . . . . . . . . 22 ℕ ⊆ ℝ*
170169a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → ℕ ⊆ ℝ*)
171 imassrn 6020 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 “ ℕ) ⊆ ran 𝐺
172158adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → 𝐺:ℕ⟶𝑍)
173172frnd 6659 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → ran 𝐺𝑍)
174173, 55sstrdi 3947 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → ran 𝐺 ⊆ ℝ)
175171, 174sstrid 3946 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆ ℝ)
176175, 168sstrdi 3947 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆ ℝ*)
177 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
178148adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → 𝑘 ∈ ℕ)
179 leisorel 14364 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)) ∧ (ℕ ⊆ ℝ* ∧ (𝐺 “ ℕ) ⊆ ℝ*) ∧ (𝑥 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝑥𝑘 ↔ (𝐺𝑥) ≤ (𝐺𝑘)))
180166, 170, 176, 177, 178, 179syl122anc 1381 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → (𝑥𝑘 ↔ (𝐺𝑥) ≤ (𝐺𝑘)))
181165, 180bitr4d 282 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → ((𝐺𝑥) ∈ (𝑀...(𝐺𝑘)) ↔ 𝑥𝑘))
182181pm5.32da 579 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((𝑥 ∈ ℕ ∧ (𝐺𝑥) ∈ (𝑀...(𝐺𝑘))) ↔ (𝑥 ∈ ℕ ∧ 𝑥𝑘)))
183 elpreima 6991 . . . . . . . . . . . . . . . . . . 19 (𝐺 Fn ℕ → (𝑥 ∈ (𝐺 “ (𝑀...(𝐺𝑘))) ↔ (𝑥 ∈ ℕ ∧ (𝐺𝑥) ∈ (𝑀...(𝐺𝑘)))))
184158, 25, 1833syl 18 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝑥 ∈ (𝐺 “ (𝑀...(𝐺𝑘))) ↔ (𝑥 ∈ ℕ ∧ (𝐺𝑥) ∈ (𝑀...(𝐺𝑘)))))
185 fznn 13489 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → (𝑥 ∈ (1...𝑘) ↔ (𝑥 ∈ ℕ ∧ 𝑥𝑘)))
186140, 185syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝑥 ∈ (1...𝑘) ↔ (𝑥 ∈ ℕ ∧ 𝑥𝑘)))
187182, 184, 1863bitr4d 311 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝑥 ∈ (𝐺 “ (𝑀...(𝐺𝑘))) ↔ 𝑥 ∈ (1...𝑘)))
188187eqrdv 2729 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺 “ (𝑀...(𝐺𝑘))) = (1...𝑘))
189188imaeq2d 6009 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))) = (𝐺 “ (1...𝑘)))
190189sseq1d 3966 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗))) ↔ (𝐺 “ (1...𝑘)) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗)))))
19135ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝐺:ℕ–1-1𝑍)
192 fz1ssnn 13452 . . . . . . . . . . . . . . . . . . 19 (1...𝑘) ⊆ ℕ
193 ovex 7379 . . . . . . . . . . . . . . . . . . . 20 (1...𝑘) ∈ V
194193f1imaen 8939 . . . . . . . . . . . . . . . . . . 19 ((𝐺:ℕ–1-1𝑍 ∧ (1...𝑘) ⊆ ℕ) → (𝐺 “ (1...𝑘)) ≈ (1...𝑘))
195191, 192, 194sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺 “ (1...𝑘)) ≈ (1...𝑘))
196 fzfid 13877 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (1...𝑘) ∈ Fin)
197 enfii 9095 . . . . . . . . . . . . . . . . . . . 20 (((1...𝑘) ∈ Fin ∧ (𝐺 “ (1...𝑘)) ≈ (1...𝑘)) → (𝐺 “ (1...𝑘)) ∈ Fin)
198196, 195, 197syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺 “ (1...𝑘)) ∈ Fin)
199 hashen 14251 . . . . . . . . . . . . . . . . . . 19 (((𝐺 “ (1...𝑘)) ∈ Fin ∧ (1...𝑘) ∈ Fin) → ((♯‘(𝐺 “ (1...𝑘))) = (♯‘(1...𝑘)) ↔ (𝐺 “ (1...𝑘)) ≈ (1...𝑘)))
200198, 196, 199syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((♯‘(𝐺 “ (1...𝑘))) = (♯‘(1...𝑘)) ↔ (𝐺 “ (1...𝑘)) ≈ (1...𝑘)))
201195, 200mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (♯‘(𝐺 “ (1...𝑘))) = (♯‘(1...𝑘)))
202 nnnn0 12385 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
203 hashfz1 14250 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (♯‘(1...𝑘)) = 𝑘)
204148, 202, 2033syl 18 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (♯‘(1...𝑘)) = 𝑘)
205201, 204eqtrd 2766 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (♯‘(𝐺 “ (1...𝑘))) = 𝑘)
206205breq1d 5101 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((♯‘(𝐺 “ (1...𝑘))) ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ↔ 𝑘 ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗))))))
207 hashdom 14283 . . . . . . . . . . . . . . . 16 (((𝐺 “ (1...𝑘)) ∈ Fin ∧ (𝐺 “ (𝐺 “ (𝑀...𝑗))) ∈ Fin) → ((♯‘(𝐺 “ (1...𝑘))) ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ↔ (𝐺 “ (1...𝑘)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑗)))))
208198, 136, 207syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((♯‘(𝐺 “ (1...𝑘))) ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ↔ (𝐺 “ (1...𝑘)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑗)))))
209206, 208bitr3d 281 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝑘 ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ↔ (𝐺 “ (1...𝑘)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑗)))))
210157, 190, 2093imtr4d 294 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗))) → 𝑘 ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗))))))
211155, 210syl5 34 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝑗 ∈ (ℤ‘(𝐺𝑘)) → 𝑘 ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗))))))
212151, 211mtod 198 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ¬ 𝑗 ∈ (ℤ‘(𝐺𝑘)))
213 eluzelz 12739 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(𝐺‘1)) → 𝑗 ∈ ℤ)
214213ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝑗 ∈ ℤ)
215 uztric 12753 . . . . . . . . . . . . 13 (((𝐺𝑘) ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ (ℤ‘(𝐺𝑘)) ∨ (𝐺𝑘) ∈ (ℤ𝑗)))
216162, 214, 215syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝑗 ∈ (ℤ‘(𝐺𝑘)) ∨ (𝐺𝑘) ∈ (ℤ𝑗)))
217216ord 864 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (¬ 𝑗 ∈ (ℤ‘(𝐺𝑘)) → (𝐺𝑘) ∈ (ℤ𝑗)))
218212, 217mpd 15 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺𝑘) ∈ (ℤ𝑗))
219 oveq2 7354 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝐺𝑘) → (𝑀...𝑚) = (𝑀...(𝐺𝑘)))
220219imaeq2d 6009 . . . . . . . . . . . . . . . 16 (𝑚 = (𝐺𝑘) → (𝐺 “ (𝑀...𝑚)) = (𝐺 “ (𝑀...(𝐺𝑘))))
221220imaeq2d 6009 . . . . . . . . . . . . . . 15 (𝑚 = (𝐺𝑘) → (𝐺 “ (𝐺 “ (𝑀...𝑚))) = (𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))
222221fveq2d 6826 . . . . . . . . . . . . . 14 (𝑚 = (𝐺𝑘) → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) = (♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘))))))
223222fveq2d 6826 . . . . . . . . . . . . 13 (𝑚 = (𝐺𝑘) → (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) = (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))))
224223eleq1d 2816 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → ((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ↔ (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) ∈ ℂ))
225223fvoveq1d 7368 . . . . . . . . . . . . 13 (𝑚 = (𝐺𝑘) → (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) = (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)))
226225breq1d 5101 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → ((abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥 ↔ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) < 𝑥))
227224, 226anbi12d 632 . . . . . . . . . . 11 (𝑚 = (𝐺𝑘) → (((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) ↔ ((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) < 𝑥)))
228227rspcv 3573 . . . . . . . . . 10 ((𝐺𝑘) ∈ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) → ((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) < 𝑥)))
229218, 228syl 17 . . . . . . . . 9 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) → ((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) < 𝑥)))
230189fveq2d 6826 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘))))) = (♯‘(𝐺 “ (1...𝑘))))
231230, 205eqtrd 2766 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘))))) = 𝑘)
232231fveq2d 6826 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) = (seq1( + , 𝐻)‘𝑘))
233232eleq1d 2816 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) ∈ ℂ ↔ (seq1( + , 𝐻)‘𝑘) ∈ ℂ))
234232fvoveq1d 7368 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) = (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)))
235234breq1d 5101 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) < 𝑥 ↔ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥))
236233, 235anbi12d 632 . . . . . . . . 9 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) < 𝑥) ↔ ((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)))
237229, 236sylibd 239 . . . . . . . 8 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) → ((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)))
238237ralrimdva 3132 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → (∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) → ∀𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)))
239 fveq2 6822 . . . . . . . . 9 (𝑛 = ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) → (ℤ𝑛) = (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1)))
240239raleqdv 3292 . . . . . . . 8 (𝑛 = ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) → (∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)))
241240rspcev 3577 . . . . . . 7 ((((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ∈ ℕ ∧ ∀𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥))
242133, 238, 241syl6an 684 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → (∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)))
243242rexlimdva 3133 . . . . 5 (𝜑 → (∃𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)))
244123, 243impbid 212 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
245244ralbidv 3155 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
246245anbi2d 630 . 2 (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥))))
247 nnuz 12772 . . 3 ℕ = (ℤ‘1)
248 1zzd 12500 . . 3 (𝜑 → 1 ∈ ℤ)
249 seqex 13907 . . . 4 seq1( + , 𝐻) ∈ V
250249a1i 11 . . 3 (𝜑 → seq1( + , 𝐻) ∈ V)
251 eqidd 2732 . . 3 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘𝑘) = (seq1( + , 𝐻)‘𝑘))
252247, 248, 250, 251clim2 15408 . 2 (𝜑 → (seq1( + , 𝐻) ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥))))
253118, 119syl 17 . . 3 (𝜑 → (𝐺‘1) ∈ ℤ)
254 seqex 13907 . . . 4 seq𝑀( + , 𝐹) ∈ V
255254a1i 11 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ V)
256 isercoll.0 . . . 4 ((𝜑𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
257 isercoll.f . . . 4 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℂ)
258 isercoll.h . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
2591, 21, 4, 22, 256, 257, 258isercolllem3 15571 . . 3 ((𝜑𝑚 ∈ (ℤ‘(𝐺‘1))) → (seq𝑀( + , 𝐹)‘𝑚) = (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))))
260120, 253, 255, 259clim2 15408 . 2 (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥))))
261246, 252, 2603bitr4d 311 1 (𝜑 → (seq1( + , 𝐻) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cdif 3899  cin 3901  wss 3902   class class class wbr 5091  ccnv 5615  ran crn 5617  cres 5618  cima 5619  Fun wfun 6475   Fn wfn 6476  wf 6477  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481   Isom wiso 6482  (class class class)co 7346  cen 8866  cdom 8867  Fincfn 8869  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006  *cxr 11142   < clt 11143  cle 11144  cmin 11341  cn 12122  0cn0 12378  cz 12465  cuz 12729  +crp 12887  ...cfz 13404  seqcseq 13905  chash 14234  abscabs 15138  cli 15388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-fz 13405  df-seq 13906  df-hash 14235  df-clim 15392
This theorem is referenced by:  isercoll2  15573
  Copyright terms: Public domain W3C validator