MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercoll Structured version   Visualization version   GIF version

Theorem isercoll 15558
Description: Rearrange an infinite series by spacing out the terms using an order isomorphism. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z 𝑍 = (ℤ𝑀)
isercoll.m (𝜑𝑀 ∈ ℤ)
isercoll.g (𝜑𝐺:ℕ⟶𝑍)
isercoll.i ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
isercoll.0 ((𝜑𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
isercoll.f ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℂ)
isercoll.h ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
Assertion
Ref Expression
isercoll (𝜑 → (seq1( + , 𝐻) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹,𝑛   𝜑,𝑘,𝑛   𝑘,𝐺,𝑛   𝑘,𝐻,𝑛   𝑘,𝑀,𝑛   𝑛,𝑍
Allowed substitution hint:   𝑍(𝑘)

Proof of Theorem isercoll
Dummy variables 𝑗 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isercoll.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
2 uzssz 12789 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
31, 2eqsstri 3979 . . . . . . . . 9 𝑍 ⊆ ℤ
4 isercoll.g . . . . . . . . . 10 (𝜑𝐺:ℕ⟶𝑍)
54ffvelcdmda 7036 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ 𝑍)
63, 5sselid 3943 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℤ)
7 nnz 12525 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
87ad2antlr 726 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → 𝑛 ∈ ℤ)
9 fzfid 13884 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝑀...𝑚) ∈ Fin)
10 ffun 6672 . . . . . . . . . . . . . . . 16 (𝐺:ℕ⟶𝑍 → Fun 𝐺)
11 funimacnv 6583 . . . . . . . . . . . . . . . 16 (Fun 𝐺 → (𝐺 “ (𝐺 “ (𝑀...𝑚))) = ((𝑀...𝑚) ∩ ran 𝐺))
124, 10, 113syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺 “ (𝐺 “ (𝑀...𝑚))) = ((𝑀...𝑚) ∩ ran 𝐺))
13 inss1 4189 . . . . . . . . . . . . . . 15 ((𝑀...𝑚) ∩ ran 𝐺) ⊆ (𝑀...𝑚)
1412, 13eqsstrdi 3999 . . . . . . . . . . . . . 14 (𝜑 → (𝐺 “ (𝐺 “ (𝑀...𝑚))) ⊆ (𝑀...𝑚))
1514ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝐺 “ (𝐺 “ (𝑀...𝑚))) ⊆ (𝑀...𝑚))
169, 15ssfid 9214 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝐺 “ (𝐺 “ (𝑀...𝑚))) ∈ Fin)
17 hashcl 14262 . . . . . . . . . . . 12 ((𝐺 “ (𝐺 “ (𝑀...𝑚))) ∈ Fin → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ ℕ0)
18 nn0z 12529 . . . . . . . . . . . 12 ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ ℕ0 → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ ℤ)
1916, 17, 183syl 18 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ ℤ)
20 ssid 3967 . . . . . . . . . . . . . . . . . . . 20 ℕ ⊆ ℕ
21 isercoll.m . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 ∈ ℤ)
22 isercoll.i . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
231, 21, 4, 22isercolllem1 15555 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ℕ ⊆ ℕ) → (𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)))
2420, 23mpan2 690 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)))
25 ffn 6669 . . . . . . . . . . . . . . . . . . . 20 (𝐺:ℕ⟶𝑍𝐺 Fn ℕ)
26 fnresdm 6621 . . . . . . . . . . . . . . . . . . . 20 (𝐺 Fn ℕ → (𝐺 ↾ ℕ) = 𝐺)
27 isoeq1 7263 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ↾ ℕ) = 𝐺 → ((𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)) ↔ 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ))))
284, 25, 26, 274syl 19 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)) ↔ 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ))))
2924, 28mpbid 231 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)))
30 isof1o 7269 . . . . . . . . . . . . . . . . . 18 (𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)) → 𝐺:ℕ–1-1-onto→(𝐺 “ ℕ))
31 f1ocnv 6797 . . . . . . . . . . . . . . . . . 18 (𝐺:ℕ–1-1-onto→(𝐺 “ ℕ) → 𝐺:(𝐺 “ ℕ)–1-1-onto→ℕ)
32 f1ofun 6787 . . . . . . . . . . . . . . . . . 18 (𝐺:(𝐺 “ ℕ)–1-1-onto→ℕ → Fun 𝐺)
3329, 30, 31, 324syl 19 . . . . . . . . . . . . . . . . 17 (𝜑 → Fun 𝐺)
34 df-f1 6502 . . . . . . . . . . . . . . . . 17 (𝐺:ℕ–1-1𝑍 ↔ (𝐺:ℕ⟶𝑍 ∧ Fun 𝐺))
354, 33, 34sylanbrc 584 . . . . . . . . . . . . . . . 16 (𝜑𝐺:ℕ–1-1𝑍)
3635ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → 𝐺:ℕ–1-1𝑍)
37 fz1ssnn 13478 . . . . . . . . . . . . . . 15 (1...𝑛) ⊆ ℕ
38 ovex 7391 . . . . . . . . . . . . . . . 16 (1...𝑛) ∈ V
3938f1imaen 8959 . . . . . . . . . . . . . . 15 ((𝐺:ℕ–1-1𝑍 ∧ (1...𝑛) ⊆ ℕ) → (𝐺 “ (1...𝑛)) ≈ (1...𝑛))
4036, 37, 39sylancl 587 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝐺 “ (1...𝑛)) ≈ (1...𝑛))
41 fzfid 13884 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (1...𝑛) ∈ Fin)
42 enfii 9136 . . . . . . . . . . . . . . . 16 (((1...𝑛) ∈ Fin ∧ (𝐺 “ (1...𝑛)) ≈ (1...𝑛)) → (𝐺 “ (1...𝑛)) ∈ Fin)
4341, 40, 42syl2anc 585 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝐺 “ (1...𝑛)) ∈ Fin)
44 hashen 14253 . . . . . . . . . . . . . . 15 (((𝐺 “ (1...𝑛)) ∈ Fin ∧ (1...𝑛) ∈ Fin) → ((♯‘(𝐺 “ (1...𝑛))) = (♯‘(1...𝑛)) ↔ (𝐺 “ (1...𝑛)) ≈ (1...𝑛)))
4543, 41, 44syl2anc 585 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → ((♯‘(𝐺 “ (1...𝑛))) = (♯‘(1...𝑛)) ↔ (𝐺 “ (1...𝑛)) ≈ (1...𝑛)))
4640, 45mpbird 257 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (♯‘(𝐺 “ (1...𝑛))) = (♯‘(1...𝑛)))
47 nnnn0 12425 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
4847ad2antlr 726 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → 𝑛 ∈ ℕ0)
49 hashfz1 14252 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛)
5048, 49syl 17 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (♯‘(1...𝑛)) = 𝑛)
5146, 50eqtrd 2773 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (♯‘(𝐺 “ (1...𝑛))) = 𝑛)
52 elfznn 13476 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1...𝑛) → 𝑦 ∈ ℕ)
5352adantl 483 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑦 ∈ ℕ)
54 zssre 12511 . . . . . . . . . . . . . . . . . . . . . 22 ℤ ⊆ ℝ
553, 54sstri 3954 . . . . . . . . . . . . . . . . . . . . 21 𝑍 ⊆ ℝ
564ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → 𝐺:ℕ⟶𝑍)
57 ffvelcdm 7033 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺:ℕ⟶𝑍𝑦 ∈ ℕ) → (𝐺𝑦) ∈ 𝑍)
5856, 52, 57syl2an 597 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑦) ∈ 𝑍)
5955, 58sselid 3943 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑦) ∈ ℝ)
605ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑛) ∈ 𝑍)
6155, 60sselid 3943 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑛) ∈ ℝ)
62 eluzelz 12778 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ (ℤ‘(𝐺𝑛)) → 𝑚 ∈ ℤ)
6362ad2antlr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑚 ∈ ℤ)
6463zred 12612 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑚 ∈ ℝ)
65 elfzle2 13451 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (1...𝑛) → 𝑦𝑛)
6665adantl 483 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑦𝑛)
6729ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)))
68 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑛 ∈ ℕ)
69 isorel 7272 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ ℕ)) → (𝑛 < 𝑦 ↔ (𝐺𝑛) < (𝐺𝑦)))
7067, 68, 53, 69syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝑛 < 𝑦 ↔ (𝐺𝑛) < (𝐺𝑦)))
7170notbid 318 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (¬ 𝑛 < 𝑦 ↔ ¬ (𝐺𝑛) < (𝐺𝑦)))
7253nnred 12173 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑦 ∈ ℝ)
7368nnred 12173 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑛 ∈ ℝ)
7472, 73lenltd 11306 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝑦𝑛 ↔ ¬ 𝑛 < 𝑦))
7559, 61lenltd 11306 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → ((𝐺𝑦) ≤ (𝐺𝑛) ↔ ¬ (𝐺𝑛) < (𝐺𝑦)))
7671, 74, 753bitr4d 311 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝑦𝑛 ↔ (𝐺𝑦) ≤ (𝐺𝑛)))
7766, 76mpbid 231 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑦) ≤ (𝐺𝑛))
78 eluzle 12781 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (ℤ‘(𝐺𝑛)) → (𝐺𝑛) ≤ 𝑚)
7978ad2antlr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑛) ≤ 𝑚)
8059, 61, 64, 77, 79letrd 11317 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑦) ≤ 𝑚)
8158, 1eleqtrdi 2844 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑦) ∈ (ℤ𝑀))
82 elfz5 13439 . . . . . . . . . . . . . . . . . . . 20 (((𝐺𝑦) ∈ (ℤ𝑀) ∧ 𝑚 ∈ ℤ) → ((𝐺𝑦) ∈ (𝑀...𝑚) ↔ (𝐺𝑦) ≤ 𝑚))
8381, 63, 82syl2anc 585 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → ((𝐺𝑦) ∈ (𝑀...𝑚) ↔ (𝐺𝑦) ≤ 𝑚))
8480, 83mpbird 257 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝐺𝑦) ∈ (𝑀...𝑚))
8556ffnd 6670 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → 𝐺 Fn ℕ)
8685adantr 482 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝐺 Fn ℕ)
87 elpreima 7009 . . . . . . . . . . . . . . . . . . 19 (𝐺 Fn ℕ → (𝑦 ∈ (𝐺 “ (𝑀...𝑚)) ↔ (𝑦 ∈ ℕ ∧ (𝐺𝑦) ∈ (𝑀...𝑚))))
8886, 87syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → (𝑦 ∈ (𝐺 “ (𝑀...𝑚)) ↔ (𝑦 ∈ ℕ ∧ (𝐺𝑦) ∈ (𝑀...𝑚))))
8953, 84, 88mpbir2and 712 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) ∧ 𝑦 ∈ (1...𝑛)) → 𝑦 ∈ (𝐺 “ (𝑀...𝑚)))
9089ex 414 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝑦 ∈ (1...𝑛) → 𝑦 ∈ (𝐺 “ (𝑀...𝑚))))
9190ssrdv 3951 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (1...𝑛) ⊆ (𝐺 “ (𝑀...𝑚)))
92 imass2 6055 . . . . . . . . . . . . . . 15 ((1...𝑛) ⊆ (𝐺 “ (𝑀...𝑚)) → (𝐺 “ (1...𝑛)) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑚))))
9391, 92syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝐺 “ (1...𝑛)) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑚))))
94 ssdomg 8943 . . . . . . . . . . . . . 14 ((𝐺 “ (𝐺 “ (𝑀...𝑚))) ∈ Fin → ((𝐺 “ (1...𝑛)) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑚))) → (𝐺 “ (1...𝑛)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑚)))))
9516, 93, 94sylc 65 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (𝐺 “ (1...𝑛)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑚))))
96 hashdom 14285 . . . . . . . . . . . . . 14 (((𝐺 “ (1...𝑛)) ∈ Fin ∧ (𝐺 “ (𝐺 “ (𝑀...𝑚))) ∈ Fin) → ((♯‘(𝐺 “ (1...𝑛))) ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ↔ (𝐺 “ (1...𝑛)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑚)))))
9743, 16, 96syl2anc 585 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → ((♯‘(𝐺 “ (1...𝑛))) ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ↔ (𝐺 “ (1...𝑛)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑚)))))
9895, 97mpbird 257 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (♯‘(𝐺 “ (1...𝑛))) ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))))
9951, 98eqbrtrrd 5130 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → 𝑛 ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))))
100 eluz2 12774 . . . . . . . . . . 11 ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ (ℤ𝑛) ↔ (𝑛 ∈ ℤ ∧ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ ℤ ∧ 𝑛 ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))))
1018, 19, 99, 100syl3anbrc 1344 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ (ℤ𝑛))
102 fveq2 6843 . . . . . . . . . . . . 13 (𝑘 = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) → (seq1( + , 𝐻)‘𝑘) = (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))))
103102eleq1d 2819 . . . . . . . . . . . 12 (𝑘 = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) → ((seq1( + , 𝐻)‘𝑘) ∈ ℂ ↔ (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ))
104102fvoveq1d 7380 . . . . . . . . . . . . 13 (𝑘 = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) → (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) = (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)))
105104breq1d 5116 . . . . . . . . . . . 12 (𝑘 = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) → ((abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥))
106103, 105anbi12d 632 . . . . . . . . . . 11 (𝑘 = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) → (((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) ↔ ((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
107106rspcv 3576 . . . . . . . . . 10 ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) ∈ (ℤ𝑛) → (∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) → ((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
108101, 107syl 17 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝐺𝑛))) → (∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) → ((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
109108ralrimdva 3148 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) → ∀𝑚 ∈ (ℤ‘(𝐺𝑛))((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
110 fveq2 6843 . . . . . . . . . 10 (𝑗 = (𝐺𝑛) → (ℤ𝑗) = (ℤ‘(𝐺𝑛)))
111110raleqdv 3312 . . . . . . . . 9 (𝑗 = (𝐺𝑛) → (∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) ↔ ∀𝑚 ∈ (ℤ‘(𝐺𝑛))((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
112111rspcev 3580 . . . . . . . 8 (((𝐺𝑛) ∈ ℤ ∧ ∀𝑚 ∈ (ℤ‘(𝐺𝑛))((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)) → ∃𝑗 ∈ ℤ ∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥))
1136, 109, 112syl6an 683 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) → ∃𝑗 ∈ ℤ ∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
114113rexlimdva 3149 . . . . . 6 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) → ∃𝑗 ∈ ℤ ∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
115 1nn 12169 . . . . . . . . 9 1 ∈ ℕ
116 ffvelcdm 7033 . . . . . . . . 9 ((𝐺:ℕ⟶𝑍 ∧ 1 ∈ ℕ) → (𝐺‘1) ∈ 𝑍)
1174, 115, 116sylancl 587 . . . . . . . 8 (𝜑 → (𝐺‘1) ∈ 𝑍)
118117, 1eleqtrdi 2844 . . . . . . 7 (𝜑 → (𝐺‘1) ∈ (ℤ𝑀))
119 eluzelz 12778 . . . . . . 7 ((𝐺‘1) ∈ (ℤ𝑀) → (𝐺‘1) ∈ ℤ)
120 eqid 2733 . . . . . . . 8 (ℤ‘(𝐺‘1)) = (ℤ‘(𝐺‘1))
121120rexuz3 15239 . . . . . . 7 ((𝐺‘1) ∈ ℤ → (∃𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
122118, 119, 1213syl 18 . . . . . 6 (𝜑 → (∃𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
123114, 122sylibrd 259 . . . . 5 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) → ∃𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
124 fzfid 13884 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → (𝑀...𝑗) ∈ Fin)
125 funimacnv 6583 . . . . . . . . . . . 12 (Fun 𝐺 → (𝐺 “ (𝐺 “ (𝑀...𝑗))) = ((𝑀...𝑗) ∩ ran 𝐺))
1264, 10, 1253syl 18 . . . . . . . . . . 11 (𝜑 → (𝐺 “ (𝐺 “ (𝑀...𝑗))) = ((𝑀...𝑗) ∩ ran 𝐺))
127 inss1 4189 . . . . . . . . . . 11 ((𝑀...𝑗) ∩ ran 𝐺) ⊆ (𝑀...𝑗)
128126, 127eqsstrdi 3999 . . . . . . . . . 10 (𝜑 → (𝐺 “ (𝐺 “ (𝑀...𝑗))) ⊆ (𝑀...𝑗))
129128adantr 482 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑗))) ⊆ (𝑀...𝑗))
130124, 129ssfid 9214 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑗))) ∈ Fin)
131 hashcl 14262 . . . . . . . 8 ((𝐺 “ (𝐺 “ (𝑀...𝑗))) ∈ Fin → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℕ0)
132 nn0p1nn 12457 . . . . . . . 8 ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℕ0 → ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ∈ ℕ)
133130, 131, 1323syl 18 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ∈ ℕ)
134 eluzle 12781 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1)) → ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ≤ 𝑘)
135134adantl 483 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ≤ 𝑘)
136130adantr 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺 “ (𝐺 “ (𝑀...𝑗))) ∈ Fin)
137 nn0z 12529 . . . . . . . . . . . . . . . 16 ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℕ0 → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℤ)
138136, 131, 1373syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℤ)
139 eluzelz 12778 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1)) → 𝑘 ∈ ℤ)
140139adantl 483 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝑘 ∈ ℤ)
141 zltp1le 12558 . . . . . . . . . . . . . . 15 (((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) < 𝑘 ↔ ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ≤ 𝑘))
142138, 140, 141syl2anc 585 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) < 𝑘 ↔ ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ≤ 𝑘))
143135, 142mpbird 257 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) < 𝑘)
144 nn0re 12427 . . . . . . . . . . . . . . . 16 ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℕ0 → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℝ)
145130, 131, 1443syl 18 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℝ)
146145adantr 482 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ∈ ℝ)
147 eluznn 12848 . . . . . . . . . . . . . . . 16 ((((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝑘 ∈ ℕ)
148133, 147sylan 581 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝑘 ∈ ℕ)
149148nnred 12173 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝑘 ∈ ℝ)
150146, 149ltnled 11307 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) < 𝑘 ↔ ¬ 𝑘 ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗))))))
151143, 150mpbid 231 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ¬ 𝑘 ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))))
152 fzss2 13487 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(𝐺𝑘)) → (𝑀...(𝐺𝑘)) ⊆ (𝑀...𝑗))
153 imass2 6055 . . . . . . . . . . . . . 14 ((𝑀...(𝐺𝑘)) ⊆ (𝑀...𝑗) → (𝐺 “ (𝑀...(𝐺𝑘))) ⊆ (𝐺 “ (𝑀...𝑗)))
154 imass2 6055 . . . . . . . . . . . . . 14 ((𝐺 “ (𝑀...(𝐺𝑘))) ⊆ (𝐺 “ (𝑀...𝑗)) → (𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗))))
155152, 153, 1543syl 18 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘(𝐺𝑘)) → (𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗))))
156 ssdomg 8943 . . . . . . . . . . . . . . 15 ((𝐺 “ (𝐺 “ (𝑀...𝑗))) ∈ Fin → ((𝐺 “ (1...𝑘)) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗))) → (𝐺 “ (1...𝑘)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑗)))))
157136, 156syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((𝐺 “ (1...𝑘)) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗))) → (𝐺 “ (1...𝑘)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑗)))))
1584ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝐺:ℕ⟶𝑍)
159158ffvelcdmda 7036 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ 𝑍)
160159, 1eleqtrdi 2844 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ (ℤ𝑀))
161158, 148ffvelcdmd 7037 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺𝑘) ∈ 𝑍)
1623, 161sselid 3943 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺𝑘) ∈ ℤ)
163162adantr 482 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑘) ∈ ℤ)
164 elfz5 13439 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺𝑥) ∈ (ℤ𝑀) ∧ (𝐺𝑘) ∈ ℤ) → ((𝐺𝑥) ∈ (𝑀...(𝐺𝑘)) ↔ (𝐺𝑥) ≤ (𝐺𝑘)))
165160, 163, 164syl2anc 585 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → ((𝐺𝑥) ∈ (𝑀...(𝐺𝑘)) ↔ (𝐺𝑥) ≤ (𝐺𝑘)))
16629ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)))
167 nnssre 12162 . . . . . . . . . . . . . . . . . . . . . . 23 ℕ ⊆ ℝ
168 ressxr 11204 . . . . . . . . . . . . . . . . . . . . . . 23 ℝ ⊆ ℝ*
169167, 168sstri 3954 . . . . . . . . . . . . . . . . . . . . . 22 ℕ ⊆ ℝ*
170169a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → ℕ ⊆ ℝ*)
171 imassrn 6025 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 “ ℕ) ⊆ ran 𝐺
172158adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → 𝐺:ℕ⟶𝑍)
173172frnd 6677 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → ran 𝐺𝑍)
174173, 55sstrdi 3957 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → ran 𝐺 ⊆ ℝ)
175171, 174sstrid 3956 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆ ℝ)
176175, 168sstrdi 3957 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆ ℝ*)
177 simpr 486 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
178148adantr 482 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → 𝑘 ∈ ℕ)
179 leisorel 14365 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)) ∧ (ℕ ⊆ ℝ* ∧ (𝐺 “ ℕ) ⊆ ℝ*) ∧ (𝑥 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝑥𝑘 ↔ (𝐺𝑥) ≤ (𝐺𝑘)))
180166, 170, 176, 177, 178, 179syl122anc 1380 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → (𝑥𝑘 ↔ (𝐺𝑥) ≤ (𝐺𝑘)))
181165, 180bitr4d 282 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) ∧ 𝑥 ∈ ℕ) → ((𝐺𝑥) ∈ (𝑀...(𝐺𝑘)) ↔ 𝑥𝑘))
182181pm5.32da 580 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((𝑥 ∈ ℕ ∧ (𝐺𝑥) ∈ (𝑀...(𝐺𝑘))) ↔ (𝑥 ∈ ℕ ∧ 𝑥𝑘)))
183 elpreima 7009 . . . . . . . . . . . . . . . . . . 19 (𝐺 Fn ℕ → (𝑥 ∈ (𝐺 “ (𝑀...(𝐺𝑘))) ↔ (𝑥 ∈ ℕ ∧ (𝐺𝑥) ∈ (𝑀...(𝐺𝑘)))))
184158, 25, 1833syl 18 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝑥 ∈ (𝐺 “ (𝑀...(𝐺𝑘))) ↔ (𝑥 ∈ ℕ ∧ (𝐺𝑥) ∈ (𝑀...(𝐺𝑘)))))
185 fznn 13515 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → (𝑥 ∈ (1...𝑘) ↔ (𝑥 ∈ ℕ ∧ 𝑥𝑘)))
186140, 185syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝑥 ∈ (1...𝑘) ↔ (𝑥 ∈ ℕ ∧ 𝑥𝑘)))
187182, 184, 1863bitr4d 311 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝑥 ∈ (𝐺 “ (𝑀...(𝐺𝑘))) ↔ 𝑥 ∈ (1...𝑘)))
188187eqrdv 2731 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺 “ (𝑀...(𝐺𝑘))) = (1...𝑘))
189188imaeq2d 6014 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))) = (𝐺 “ (1...𝑘)))
190189sseq1d 3976 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗))) ↔ (𝐺 “ (1...𝑘)) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗)))))
19135ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝐺:ℕ–1-1𝑍)
192 fz1ssnn 13478 . . . . . . . . . . . . . . . . . . 19 (1...𝑘) ⊆ ℕ
193 ovex 7391 . . . . . . . . . . . . . . . . . . . 20 (1...𝑘) ∈ V
194193f1imaen 8959 . . . . . . . . . . . . . . . . . . 19 ((𝐺:ℕ–1-1𝑍 ∧ (1...𝑘) ⊆ ℕ) → (𝐺 “ (1...𝑘)) ≈ (1...𝑘))
195191, 192, 194sylancl 587 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺 “ (1...𝑘)) ≈ (1...𝑘))
196 fzfid 13884 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (1...𝑘) ∈ Fin)
197 enfii 9136 . . . . . . . . . . . . . . . . . . . 20 (((1...𝑘) ∈ Fin ∧ (𝐺 “ (1...𝑘)) ≈ (1...𝑘)) → (𝐺 “ (1...𝑘)) ∈ Fin)
198196, 195, 197syl2anc 585 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺 “ (1...𝑘)) ∈ Fin)
199 hashen 14253 . . . . . . . . . . . . . . . . . . 19 (((𝐺 “ (1...𝑘)) ∈ Fin ∧ (1...𝑘) ∈ Fin) → ((♯‘(𝐺 “ (1...𝑘))) = (♯‘(1...𝑘)) ↔ (𝐺 “ (1...𝑘)) ≈ (1...𝑘)))
200198, 196, 199syl2anc 585 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((♯‘(𝐺 “ (1...𝑘))) = (♯‘(1...𝑘)) ↔ (𝐺 “ (1...𝑘)) ≈ (1...𝑘)))
201195, 200mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (♯‘(𝐺 “ (1...𝑘))) = (♯‘(1...𝑘)))
202 nnnn0 12425 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
203 hashfz1 14252 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (♯‘(1...𝑘)) = 𝑘)
204148, 202, 2033syl 18 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (♯‘(1...𝑘)) = 𝑘)
205201, 204eqtrd 2773 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (♯‘(𝐺 “ (1...𝑘))) = 𝑘)
206205breq1d 5116 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((♯‘(𝐺 “ (1...𝑘))) ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ↔ 𝑘 ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗))))))
207 hashdom 14285 . . . . . . . . . . . . . . . 16 (((𝐺 “ (1...𝑘)) ∈ Fin ∧ (𝐺 “ (𝐺 “ (𝑀...𝑗))) ∈ Fin) → ((♯‘(𝐺 “ (1...𝑘))) ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ↔ (𝐺 “ (1...𝑘)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑗)))))
208198, 136, 207syl2anc 585 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((♯‘(𝐺 “ (1...𝑘))) ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ↔ (𝐺 “ (1...𝑘)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑗)))))
209206, 208bitr3d 281 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝑘 ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) ↔ (𝐺 “ (1...𝑘)) ≼ (𝐺 “ (𝐺 “ (𝑀...𝑗)))))
210157, 190, 2093imtr4d 294 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))) ⊆ (𝐺 “ (𝐺 “ (𝑀...𝑗))) → 𝑘 ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗))))))
211155, 210syl5 34 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝑗 ∈ (ℤ‘(𝐺𝑘)) → 𝑘 ≤ (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗))))))
212151, 211mtod 197 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ¬ 𝑗 ∈ (ℤ‘(𝐺𝑘)))
213 eluzelz 12778 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(𝐺‘1)) → 𝑗 ∈ ℤ)
214213ad2antlr 726 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → 𝑗 ∈ ℤ)
215 uztric 12792 . . . . . . . . . . . . 13 (((𝐺𝑘) ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ (ℤ‘(𝐺𝑘)) ∨ (𝐺𝑘) ∈ (ℤ𝑗)))
216162, 214, 215syl2anc 585 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝑗 ∈ (ℤ‘(𝐺𝑘)) ∨ (𝐺𝑘) ∈ (ℤ𝑗)))
217216ord 863 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (¬ 𝑗 ∈ (ℤ‘(𝐺𝑘)) → (𝐺𝑘) ∈ (ℤ𝑗)))
218212, 217mpd 15 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (𝐺𝑘) ∈ (ℤ𝑗))
219 oveq2 7366 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝐺𝑘) → (𝑀...𝑚) = (𝑀...(𝐺𝑘)))
220219imaeq2d 6014 . . . . . . . . . . . . . . . 16 (𝑚 = (𝐺𝑘) → (𝐺 “ (𝑀...𝑚)) = (𝐺 “ (𝑀...(𝐺𝑘))))
221220imaeq2d 6014 . . . . . . . . . . . . . . 15 (𝑚 = (𝐺𝑘) → (𝐺 “ (𝐺 “ (𝑀...𝑚))) = (𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))
222221fveq2d 6847 . . . . . . . . . . . . . 14 (𝑚 = (𝐺𝑘) → (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚)))) = (♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘))))))
223222fveq2d 6847 . . . . . . . . . . . . 13 (𝑚 = (𝐺𝑘) → (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) = (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))))
224223eleq1d 2819 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → ((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ↔ (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) ∈ ℂ))
225223fvoveq1d 7380 . . . . . . . . . . . . 13 (𝑚 = (𝐺𝑘) → (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) = (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)))
226225breq1d 5116 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → ((abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥 ↔ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) < 𝑥))
227224, 226anbi12d 632 . . . . . . . . . . 11 (𝑚 = (𝐺𝑘) → (((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) ↔ ((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) < 𝑥)))
228227rspcv 3576 . . . . . . . . . 10 ((𝐺𝑘) ∈ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) → ((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) < 𝑥)))
229218, 228syl 17 . . . . . . . . 9 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) → ((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) < 𝑥)))
230189fveq2d 6847 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘))))) = (♯‘(𝐺 “ (1...𝑘))))
231230, 205eqtrd 2773 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘))))) = 𝑘)
232231fveq2d 6847 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) = (seq1( + , 𝐻)‘𝑘))
233232eleq1d 2819 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) ∈ ℂ ↔ (seq1( + , 𝐻)‘𝑘) ∈ ℂ))
234232fvoveq1d 7380 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) = (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)))
235234breq1d 5116 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → ((abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) < 𝑥 ↔ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥))
236233, 235anbi12d 632 . . . . . . . . 9 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...(𝐺𝑘)))))) − 𝐴)) < 𝑥) ↔ ((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)))
237229, 236sylibd 238 . . . . . . . 8 (((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))) → (∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) → ((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)))
238237ralrimdva 3148 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → (∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) → ∀𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)))
239 fveq2 6843 . . . . . . . . 9 (𝑛 = ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) → (ℤ𝑛) = (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1)))
240239raleqdv 3312 . . . . . . . 8 (𝑛 = ((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) → (∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)))
241240rspcev 3580 . . . . . . 7 ((((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1) ∈ ℕ ∧ ∀𝑘 ∈ (ℤ‘((♯‘(𝐺 “ (𝐺 “ (𝑀...𝑗)))) + 1))((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥))
242133, 238, 241syl6an 683 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝐺‘1))) → (∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)))
243242rexlimdva 3149 . . . . 5 (𝜑 → (∃𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)))
244123, 243impbid 211 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
245244ralbidv 3171 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥)))
246245anbi2d 630 . 2 (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥))))
247 nnuz 12811 . . 3 ℕ = (ℤ‘1)
248 1zzd 12539 . . 3 (𝜑 → 1 ∈ ℤ)
249 seqex 13914 . . . 4 seq1( + , 𝐻) ∈ V
250249a1i 11 . . 3 (𝜑 → seq1( + , 𝐻) ∈ V)
251 eqidd 2734 . . 3 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘𝑘) = (seq1( + , 𝐻)‘𝑘))
252247, 248, 250, 251clim2 15392 . 2 (𝜑 → (seq1( + , 𝐻) ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((seq1( + , 𝐻)‘𝑘) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘𝑘) − 𝐴)) < 𝑥))))
253118, 119syl 17 . . 3 (𝜑 → (𝐺‘1) ∈ ℤ)
254 seqex 13914 . . . 4 seq𝑀( + , 𝐹) ∈ V
255254a1i 11 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ V)
256 isercoll.0 . . . 4 ((𝜑𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
257 isercoll.f . . . 4 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℂ)
258 isercoll.h . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
2591, 21, 4, 22, 256, 257, 258isercolllem3 15557 . . 3 ((𝜑𝑚 ∈ (ℤ‘(𝐺‘1))) → (seq𝑀( + , 𝐹)‘𝑚) = (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))))
260120, 253, 255, 259clim2 15392 . 2 (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ‘(𝐺‘1))∀𝑚 ∈ (ℤ𝑗)((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) ∈ ℂ ∧ (abs‘((seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑚))))) − 𝐴)) < 𝑥))))
261246, 252, 2603bitr4d 311 1 (𝜑 → (seq1( + , 𝐻) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wral 3061  wrex 3070  Vcvv 3444  cdif 3908  cin 3910  wss 3911   class class class wbr 5106  ccnv 5633  ran crn 5635  cres 5636  cima 5637  Fun wfun 6491   Fn wfn 6492  wf 6493  1-1wf1 6494  1-1-ontowf1o 6496  cfv 6497   Isom wiso 6498  (class class class)co 7358  cen 8883  cdom 8884  Fincfn 8886  cc 11054  cr 11055  0cc0 11056  1c1 11057   + caddc 11059  *cxr 11193   < clt 11194  cle 11195  cmin 11390  cn 12158  0cn0 12418  cz 12504  cuz 12768  +crp 12920  ...cfz 13430  seqcseq 13912  chash 14236  abscabs 15125  cli 15372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9582  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-oadd 8417  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-sup 9383  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-n0 12419  df-xnn0 12491  df-z 12505  df-uz 12769  df-fz 13431  df-seq 13913  df-hash 14237  df-clim 15376
This theorem is referenced by:  isercoll2  15559
  Copyright terms: Public domain W3C validator