MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem2 Structured version   Visualization version   GIF version

Theorem isercolllem2 15305
Description: Lemma for isercoll 15307. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z 𝑍 = (ℤ𝑀)
isercoll.m (𝜑𝑀 ∈ ℤ)
isercoll.g (𝜑𝐺:ℕ⟶𝑍)
isercoll.i ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
Assertion
Ref Expression
isercolllem2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) = (𝐺 “ (𝑀...𝑁)))
Distinct variable groups:   𝑘,𝑁   𝜑,𝑘   𝑘,𝐺   𝑘,𝑀
Allowed substitution hint:   𝑍(𝑘)

Proof of Theorem isercolllem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfznn 13214 . . . . . . . 8 (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) → 𝑥 ∈ ℕ)
21a1i 11 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) → 𝑥 ∈ ℕ))
3 cnvimass 5978 . . . . . . . . 9 (𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺
4 isercoll.g . . . . . . . . . 10 (𝜑𝐺:ℕ⟶𝑍)
54adantr 480 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝐺:ℕ⟶𝑍)
63, 5fssdm 6604 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ⊆ ℕ)
76sseld 3916 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) → 𝑥 ∈ ℕ))
8 id 22 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ)
9 nnuz 12550 . . . . . . . . . . 11 ℕ = (ℤ‘1)
108, 9eleqtrdi 2849 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ∈ (ℤ‘1))
11 ltso 10986 . . . . . . . . . . . . . 14 < Or ℝ
1211a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → < Or ℝ)
13 fzfid 13621 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑀...𝑁) ∈ Fin)
14 ffun 6587 . . . . . . . . . . . . . . . . 17 (𝐺:ℕ⟶𝑍 → Fun 𝐺)
15 funimacnv 6499 . . . . . . . . . . . . . . . . 17 (Fun 𝐺 → (𝐺 “ (𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺))
165, 14, 153syl 18 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺))
17 inss1 4159 . . . . . . . . . . . . . . . 16 ((𝑀...𝑁) ∩ ran 𝐺) ⊆ (𝑀...𝑁)
1816, 17eqsstrdi 3971 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ⊆ (𝑀...𝑁))
1913, 18ssfid 8971 . . . . . . . . . . . . . 14 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ∈ Fin)
20 ssid 3939 . . . . . . . . . . . . . . . . . . . . 21 ℕ ⊆ ℕ
21 isercoll.z . . . . . . . . . . . . . . . . . . . . . 22 𝑍 = (ℤ𝑀)
22 isercoll.m . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑀 ∈ ℤ)
23 isercoll.i . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
2421, 22, 4, 23isercolllem1 15304 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ℕ ⊆ ℕ) → (𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)))
2520, 24mpan2 687 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)))
26 ffn 6584 . . . . . . . . . . . . . . . . . . . . 21 (𝐺:ℕ⟶𝑍𝐺 Fn ℕ)
27 fnresdm 6535 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 Fn ℕ → (𝐺 ↾ ℕ) = 𝐺)
28 isoeq1 7168 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ↾ ℕ) = 𝐺 → ((𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)) ↔ 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ))))
294, 26, 27, 284syl 19 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)) ↔ 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ))))
3025, 29mpbid 231 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)))
31 isof1o 7174 . . . . . . . . . . . . . . . . . . 19 (𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)) → 𝐺:ℕ–1-1-onto→(𝐺 “ ℕ))
32 f1ocnv 6712 . . . . . . . . . . . . . . . . . . 19 (𝐺:ℕ–1-1-onto→(𝐺 “ ℕ) → 𝐺:(𝐺 “ ℕ)–1-1-onto→ℕ)
33 f1ofun 6702 . . . . . . . . . . . . . . . . . . 19 (𝐺:(𝐺 “ ℕ)–1-1-onto→ℕ → Fun 𝐺)
3430, 31, 32, 334syl 19 . . . . . . . . . . . . . . . . . 18 (𝜑 → Fun 𝐺)
35 df-f1 6423 . . . . . . . . . . . . . . . . . 18 (𝐺:ℕ–1-1𝑍 ↔ (𝐺:ℕ⟶𝑍 ∧ Fun 𝐺))
364, 34, 35sylanbrc 582 . . . . . . . . . . . . . . . . 17 (𝜑𝐺:ℕ–1-1𝑍)
3736adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝐺:ℕ–1-1𝑍)
38 nnex 11909 . . . . . . . . . . . . . . . . 17 ℕ ∈ V
39 ssexg 5242 . . . . . . . . . . . . . . . . 17 (((𝐺 “ (𝑀...𝑁)) ⊆ ℕ ∧ ℕ ∈ V) → (𝐺 “ (𝑀...𝑁)) ∈ V)
406, 38, 39sylancl 585 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ∈ V)
41 f1imaeng 8755 . . . . . . . . . . . . . . . 16 ((𝐺:ℕ–1-1𝑍 ∧ (𝐺 “ (𝑀...𝑁)) ⊆ ℕ ∧ (𝐺 “ (𝑀...𝑁)) ∈ V) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ≈ (𝐺 “ (𝑀...𝑁)))
4237, 6, 40, 41syl3anc 1369 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ≈ (𝐺 “ (𝑀...𝑁)))
4342ensymd 8746 . . . . . . . . . . . . . 14 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (𝐺 “ (𝑀...𝑁))))
44 enfii 8932 . . . . . . . . . . . . . 14 (((𝐺 “ (𝐺 “ (𝑀...𝑁))) ∈ Fin ∧ (𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (𝐺 “ (𝑀...𝑁)))) → (𝐺 “ (𝑀...𝑁)) ∈ Fin)
4519, 43, 44syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ∈ Fin)
46 1nn 11914 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
4746a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 1 ∈ ℕ)
48 ffvelrn 6941 . . . . . . . . . . . . . . . . . . 19 ((𝐺:ℕ⟶𝑍 ∧ 1 ∈ ℕ) → (𝐺‘1) ∈ 𝑍)
494, 46, 48sylancl 585 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺‘1) ∈ 𝑍)
5049, 21eleqtrdi 2849 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺‘1) ∈ (ℤ𝑀))
5150adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘1) ∈ (ℤ𝑀))
52 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝑁 ∈ (ℤ‘(𝐺‘1)))
53 elfzuzb 13179 . . . . . . . . . . . . . . . 16 ((𝐺‘1) ∈ (𝑀...𝑁) ↔ ((𝐺‘1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ‘(𝐺‘1))))
5451, 52, 53sylanbrc 582 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘1) ∈ (𝑀...𝑁))
555ffnd 6585 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝐺 Fn ℕ)
56 elpreima 6917 . . . . . . . . . . . . . . . 16 (𝐺 Fn ℕ → (1 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁))))
5755, 56syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁))))
5847, 54, 57mpbir2and 709 . . . . . . . . . . . . . 14 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 1 ∈ (𝐺 “ (𝑀...𝑁)))
5958ne0d 4266 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ≠ ∅)
60 nnssre 11907 . . . . . . . . . . . . . 14 ℕ ⊆ ℝ
616, 60sstrdi 3929 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ⊆ ℝ)
62 fisupcl 9158 . . . . . . . . . . . . 13 (( < Or ℝ ∧ ((𝐺 “ (𝑀...𝑁)) ∈ Fin ∧ (𝐺 “ (𝑀...𝑁)) ≠ ∅ ∧ (𝐺 “ (𝑀...𝑁)) ⊆ ℝ)) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (𝐺 “ (𝑀...𝑁)))
6312, 45, 59, 61, 62syl13anc 1370 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (𝐺 “ (𝑀...𝑁)))
646, 63sseldd 3918 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ)
6564nnzd 12354 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℤ)
66 elfz5 13177 . . . . . . . . . 10 ((𝑥 ∈ (ℤ‘1) ∧ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℤ) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
6710, 65, 66syl2anr 596 . . . . . . . . 9 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
68 elpreima 6917 . . . . . . . . . . . . . . . . 17 (𝐺 Fn ℕ → (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (𝐺 “ (𝑀...𝑁)) ↔ (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁))))
6955, 68syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (𝐺 “ (𝑀...𝑁)) ↔ (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁))))
7063, 69mpbid 231 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁)))
71 elfzle2 13189 . . . . . . . . . . . . . . 15 ((𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁)
7270, 71simpl2im 503 . . . . . . . . . . . . . 14 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁)
7372adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁)
74 uzssz 12532 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) ⊆ ℤ
7521, 74eqsstri 3951 . . . . . . . . . . . . . . . 16 𝑍 ⊆ ℤ
76 zssre 12256 . . . . . . . . . . . . . . . 16 ℤ ⊆ ℝ
7775, 76sstri 3926 . . . . . . . . . . . . . . 15 𝑍 ⊆ ℝ
785ffvelrnda 6943 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ 𝑍)
7977, 78sselid 3915 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ ℝ)
805, 64ffvelrnd 6944 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ 𝑍)
8180adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ 𝑍)
8277, 81sselid 3915 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ ℝ)
83 eluzelz 12521 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘(𝐺‘1)) → 𝑁 ∈ ℤ)
8483ad2antlr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℤ)
8576, 84sselid 3915 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℝ)
86 letr 10999 . . . . . . . . . . . . . 14 (((𝐺𝑥) ∈ ℝ ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁) → (𝐺𝑥) ≤ 𝑁))
8779, 82, 85, 86syl3anc 1369 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (((𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁) → (𝐺𝑥) ≤ 𝑁))
8873, 87mpan2d 690 . . . . . . . . . . . 12 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ((𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) → (𝐺𝑥) ≤ 𝑁))
8930ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)))
9060a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ℕ ⊆ ℝ)
91 ressxr 10950 . . . . . . . . . . . . . 14 ℝ ⊆ ℝ*
9290, 91sstrdi 3929 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ℕ ⊆ ℝ*)
93 imassrn 5969 . . . . . . . . . . . . . . . 16 (𝐺 “ ℕ) ⊆ ran 𝐺
944ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝐺:ℕ⟶𝑍)
9594frnd 6592 . . . . . . . . . . . . . . . 16 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ran 𝐺𝑍)
9693, 95sstrid 3928 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆ 𝑍)
9796, 77sstrdi 3929 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆ ℝ)
9897, 91sstrdi 3929 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆ ℝ*)
99 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
10064adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ)
101 leisorel 14102 . . . . . . . . . . . . 13 ((𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)) ∧ (ℕ ⊆ ℝ* ∧ (𝐺 “ ℕ) ⊆ ℝ*) ∧ (𝑥 ∈ ℕ ∧ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ)) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ↔ (𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))))
10289, 92, 98, 99, 100, 101syl122anc 1377 . . . . . . . . . . . 12 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ↔ (𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))))
10378, 21eleqtrdi 2849 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ (ℤ𝑀))
104 elfz5 13177 . . . . . . . . . . . . 13 (((𝐺𝑥) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → ((𝐺𝑥) ∈ (𝑀...𝑁) ↔ (𝐺𝑥) ≤ 𝑁))
105103, 84, 104syl2anc 583 . . . . . . . . . . . 12 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ((𝐺𝑥) ∈ (𝑀...𝑁) ↔ (𝐺𝑥) ≤ 𝑁))
10688, 102, 1053imtr4d 293 . . . . . . . . . . 11 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) → (𝐺𝑥) ∈ (𝑀...𝑁)))
107 elpreima 6917 . . . . . . . . . . . . 13 (𝐺 Fn ℕ → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (𝑥 ∈ ℕ ∧ (𝐺𝑥) ∈ (𝑀...𝑁))))
108107baibd 539 . . . . . . . . . . . 12 ((𝐺 Fn ℕ ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (𝐺𝑥) ∈ (𝑀...𝑁)))
10955, 108sylan 579 . . . . . . . . . . 11 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (𝐺𝑥) ∈ (𝑀...𝑁)))
110106, 109sylibrd 258 . . . . . . . . . 10 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) → 𝑥 ∈ (𝐺 “ (𝑀...𝑁))))
111 fimaxre2 11850 . . . . . . . . . . . . 13 (((𝐺 “ (𝑀...𝑁)) ⊆ ℝ ∧ (𝐺 “ (𝑀...𝑁)) ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐺 “ (𝑀...𝑁))𝑦𝑥)
11261, 45, 111syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐺 “ (𝑀...𝑁))𝑦𝑥)
113 suprub 11866 . . . . . . . . . . . . 13 ((((𝐺 “ (𝑀...𝑁)) ⊆ ℝ ∧ (𝐺 “ (𝑀...𝑁)) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐺 “ (𝑀...𝑁))𝑦𝑥) ∧ 𝑥 ∈ (𝐺 “ (𝑀...𝑁))) → 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))
114113ex 412 . . . . . . . . . . . 12 (((𝐺 “ (𝑀...𝑁)) ⊆ ℝ ∧ (𝐺 “ (𝑀...𝑁)) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐺 “ (𝑀...𝑁))𝑦𝑥) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) → 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
11561, 59, 112, 114syl3anc 1369 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) → 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
116115adantr 480 . . . . . . . . . 10 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) → 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
117110, 116impbid 211 . . . . . . . . 9 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ↔ 𝑥 ∈ (𝐺 “ (𝑀...𝑁))))
11867, 117bitrd 278 . . . . . . . 8 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ∈ (𝐺 “ (𝑀...𝑁))))
119118ex 412 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ ℕ → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ∈ (𝐺 “ (𝑀...𝑁)))))
1202, 7, 119pm5.21ndd 380 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ∈ (𝐺 “ (𝑀...𝑁))))
121120eqrdv 2736 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) = (𝐺 “ (𝑀...𝑁)))
122121fveq2d 6760 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (♯‘(1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))) = (♯‘(𝐺 “ (𝑀...𝑁))))
12364nnnn0d 12223 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ0)
124 hashfz1 13988 . . . . 5 (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ0 → (♯‘(1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))) = sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))
125123, 124syl 17 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (♯‘(1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))) = sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))
126 hashen 13989 . . . . . 6 (((𝐺 “ (𝑀...𝑁)) ∈ Fin ∧ (𝐺 “ (𝐺 “ (𝑀...𝑁))) ∈ Fin) → ((♯‘(𝐺 “ (𝑀...𝑁))) = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
12745, 19, 126syl2anc 583 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((♯‘(𝐺 “ (𝑀...𝑁))) = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
12843, 127mpbird 256 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (♯‘(𝐺 “ (𝑀...𝑁))) = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))
129122, 125, 1283eqtr3d 2786 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))
130129oveq2d 7271 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) = (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))))
131130, 121eqtr3d 2780 1 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) = (𝐺 “ (𝑀...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883  c0 4253   class class class wbr 5070   Or wor 5493  ccnv 5579  ran crn 5581  cres 5582  cima 5583  Fun wfun 6412   Fn wfn 6413  wf 6414  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418   Isom wiso 6419  (class class class)co 7255  cen 8688  Fincfn 8691  supcsup 9129  cr 10801  1c1 10803   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cn 11903  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973
This theorem is referenced by:  isercolllem3  15306
  Copyright terms: Public domain W3C validator