Step | Hyp | Ref
| Expression |
1 | | elfznn 13214 |
. . . . . . . 8
⊢ (𝑥 ∈ (1...sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) → 𝑥 ∈
ℕ) |
2 | 1 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝑥 ∈ (1...sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) → 𝑥 ∈
ℕ)) |
3 | | cnvimass 5978 |
. . . . . . . . 9
⊢ (◡𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺 |
4 | | isercoll.g |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:ℕ⟶𝑍) |
5 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 𝐺:ℕ⟶𝑍) |
6 | 3, 5 | fssdm 6604 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (◡𝐺 “ (𝑀...𝑁)) ⊆ ℕ) |
7 | 6 | sseld 3916 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝑥 ∈ (◡𝐺 “ (𝑀...𝑁)) → 𝑥 ∈ ℕ)) |
8 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℕ) |
9 | | nnuz 12550 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
10 | 8, 9 | eleqtrdi 2849 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
(ℤ≥‘1)) |
11 | | ltso 10986 |
. . . . . . . . . . . . . 14
⊢ < Or
ℝ |
12 | 11 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → < Or
ℝ) |
13 | | fzfid 13621 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝑀...𝑁) ∈ Fin) |
14 | | ffun 6587 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺:ℕ⟶𝑍 → Fun 𝐺) |
15 | | funimacnv 6499 |
. . . . . . . . . . . . . . . . 17
⊢ (Fun
𝐺 → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺)) |
16 | 5, 14, 15 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺)) |
17 | | inss1 4159 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀...𝑁) ∩ ran 𝐺) ⊆ (𝑀...𝑁) |
18 | 16, 17 | eqsstrdi 3971 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) ⊆ (𝑀...𝑁)) |
19 | 13, 18 | ssfid 8971 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) ∈ Fin) |
20 | | ssid 3939 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℕ
⊆ ℕ |
21 | | isercoll.z |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑍 =
(ℤ≥‘𝑀) |
22 | | isercoll.m |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑀 ∈ ℤ) |
23 | | isercoll.i |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) < (𝐺‘(𝑘 + 1))) |
24 | 21, 22, 4, 23 | isercolllem1 15304 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ℕ ⊆ ℕ)
→ (𝐺 ↾ ℕ)
Isom < , < (ℕ, (𝐺 “ ℕ))) |
25 | 20, 24 | mpan2 687 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐺 ↾ ℕ) Isom < , < (ℕ,
(𝐺 “
ℕ))) |
26 | | ffn 6584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐺:ℕ⟶𝑍 → 𝐺 Fn ℕ) |
27 | | fnresdm 6535 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐺 Fn ℕ → (𝐺 ↾ ℕ) = 𝐺) |
28 | | isoeq1 7168 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐺 ↾ ℕ) = 𝐺 → ((𝐺 ↾ ℕ) Isom < , < (ℕ,
(𝐺 “ ℕ)) ↔
𝐺 Isom < , <
(ℕ, (𝐺 “
ℕ)))) |
29 | 4, 26, 27, 28 | 4syl 19 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐺 ↾ ℕ) Isom < , < (ℕ,
(𝐺 “ ℕ)) ↔
𝐺 Isom < , <
(ℕ, (𝐺 “
ℕ)))) |
30 | 25, 29 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐺 Isom < , < (ℕ, (𝐺 “
ℕ))) |
31 | | isof1o 7174 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐺 Isom < , < (ℕ,
(𝐺 “ ℕ)) →
𝐺:ℕ–1-1-onto→(𝐺 “ ℕ)) |
32 | | f1ocnv 6712 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐺:ℕ–1-1-onto→(𝐺 “ ℕ) → ◡𝐺:(𝐺 “ ℕ)–1-1-onto→ℕ) |
33 | | f1ofun 6702 |
. . . . . . . . . . . . . . . . . . 19
⊢ (◡𝐺:(𝐺 “ ℕ)–1-1-onto→ℕ → Fun ◡𝐺) |
34 | 30, 31, 32, 33 | 4syl 19 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → Fun ◡𝐺) |
35 | | df-f1 6423 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺:ℕ–1-1→𝑍 ↔ (𝐺:ℕ⟶𝑍 ∧ Fun ◡𝐺)) |
36 | 4, 34, 35 | sylanbrc 582 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐺:ℕ–1-1→𝑍) |
37 | 36 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 𝐺:ℕ–1-1→𝑍) |
38 | | nnex 11909 |
. . . . . . . . . . . . . . . . 17
⊢ ℕ
∈ V |
39 | | ssexg 5242 |
. . . . . . . . . . . . . . . . 17
⊢ (((◡𝐺 “ (𝑀...𝑁)) ⊆ ℕ ∧ ℕ ∈ V)
→ (◡𝐺 “ (𝑀...𝑁)) ∈ V) |
40 | 6, 38, 39 | sylancl 585 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (◡𝐺 “ (𝑀...𝑁)) ∈ V) |
41 | | f1imaeng 8755 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺:ℕ–1-1→𝑍 ∧ (◡𝐺 “ (𝑀...𝑁)) ⊆ ℕ ∧ (◡𝐺 “ (𝑀...𝑁)) ∈ V) → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) ≈ (◡𝐺 “ (𝑀...𝑁))) |
42 | 37, 6, 40, 41 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) ≈ (◡𝐺 “ (𝑀...𝑁))) |
43 | 42 | ensymd 8746 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (◡𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) |
44 | | enfii 8932 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 “ (◡𝐺 “ (𝑀...𝑁))) ∈ Fin ∧ (◡𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) → (◡𝐺 “ (𝑀...𝑁)) ∈ Fin) |
45 | 19, 43, 44 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (◡𝐺 “ (𝑀...𝑁)) ∈ Fin) |
46 | | 1nn 11914 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℕ |
47 | 46 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 1 ∈
ℕ) |
48 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺:ℕ⟶𝑍 ∧ 1 ∈ ℕ) →
(𝐺‘1) ∈ 𝑍) |
49 | 4, 46, 48 | sylancl 585 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐺‘1) ∈ 𝑍) |
50 | 49, 21 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐺‘1) ∈
(ℤ≥‘𝑀)) |
51 | 50 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺‘1) ∈
(ℤ≥‘𝑀)) |
52 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 𝑁 ∈
(ℤ≥‘(𝐺‘1))) |
53 | | elfzuzb 13179 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘1) ∈ (𝑀...𝑁) ↔ ((𝐺‘1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1)))) |
54 | 51, 52, 53 | sylanbrc 582 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺‘1) ∈ (𝑀...𝑁)) |
55 | 5 | ffnd 6585 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 𝐺 Fn ℕ) |
56 | | elpreima 6917 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 Fn ℕ → (1 ∈
(◡𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁)))) |
57 | 55, 56 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (1 ∈
(◡𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁)))) |
58 | 47, 54, 57 | mpbir2and 709 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 1 ∈
(◡𝐺 “ (𝑀...𝑁))) |
59 | 58 | ne0d 4266 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (◡𝐺 “ (𝑀...𝑁)) ≠ ∅) |
60 | | nnssre 11907 |
. . . . . . . . . . . . . 14
⊢ ℕ
⊆ ℝ |
61 | 6, 60 | sstrdi 3929 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (◡𝐺 “ (𝑀...𝑁)) ⊆ ℝ) |
62 | | fisupcl 9158 |
. . . . . . . . . . . . 13
⊢ (( <
Or ℝ ∧ ((◡𝐺 “ (𝑀...𝑁)) ∈ Fin ∧ (◡𝐺 “ (𝑀...𝑁)) ≠ ∅ ∧ (◡𝐺 “ (𝑀...𝑁)) ⊆ ℝ)) → sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (◡𝐺 “ (𝑀...𝑁))) |
63 | 12, 45, 59, 61, 62 | syl13anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (◡𝐺 “ (𝑀...𝑁))) |
64 | 6, 63 | sseldd 3918 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈
ℕ) |
65 | 64 | nnzd 12354 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈
ℤ) |
66 | | elfz5 13177 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
(ℤ≥‘1) ∧ sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℤ) →
(𝑥 ∈ (1...sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ≤ sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ))) |
67 | 10, 65, 66 | syl2anr 596 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (1...sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ≤ sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ))) |
68 | | elpreima 6917 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 Fn ℕ → (sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (◡𝐺 “ (𝑀...𝑁)) ↔ (sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ ∧
(𝐺‘sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁)))) |
69 | 55, 68 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (◡𝐺 “ (𝑀...𝑁)) ↔ (sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ ∧
(𝐺‘sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁)))) |
70 | 63, 69 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ ∧
(𝐺‘sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁))) |
71 | | elfzle2 13189 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺‘sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁) → (𝐺‘sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁) |
72 | 70, 71 | simpl2im 503 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺‘sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁) |
73 | 72 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺‘sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁) |
74 | | uzssz 12532 |
. . . . . . . . . . . . . . . . 17
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
75 | 21, 74 | eqsstri 3951 |
. . . . . . . . . . . . . . . 16
⊢ 𝑍 ⊆
ℤ |
76 | | zssre 12256 |
. . . . . . . . . . . . . . . 16
⊢ ℤ
⊆ ℝ |
77 | 75, 76 | sstri 3926 |
. . . . . . . . . . . . . . 15
⊢ 𝑍 ⊆
ℝ |
78 | 5 | ffvelrnda 6943 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺‘𝑥) ∈ 𝑍) |
79 | 77, 78 | sselid 3915 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺‘𝑥) ∈ ℝ) |
80 | 5, 64 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺‘sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ 𝑍) |
81 | 80 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺‘sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ 𝑍) |
82 | 77, 81 | sselid 3915 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺‘sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈
ℝ) |
83 | | eluzelz 12521 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘(𝐺‘1)) → 𝑁 ∈ ℤ) |
84 | 83 | ad2antlr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈
ℤ) |
85 | 76, 84 | sselid 3915 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈
ℝ) |
86 | | letr 10999 |
. . . . . . . . . . . . . 14
⊢ (((𝐺‘𝑥) ∈ ℝ ∧ (𝐺‘sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ ℝ ∧
𝑁 ∈ ℝ) →
(((𝐺‘𝑥) ≤ (𝐺‘sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ∧ (𝐺‘sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁) → (𝐺‘𝑥) ≤ 𝑁)) |
87 | 79, 82, 85, 86 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (((𝐺‘𝑥) ≤ (𝐺‘sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ∧ (𝐺‘sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁) → (𝐺‘𝑥) ≤ 𝑁)) |
88 | 73, 87 | mpan2d 690 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ((𝐺‘𝑥) ≤ (𝐺‘sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) → (𝐺‘𝑥) ≤ 𝑁)) |
89 | 30 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝐺 Isom < , < (ℕ,
(𝐺 “
ℕ))) |
90 | 60 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ℕ
⊆ ℝ) |
91 | | ressxr 10950 |
. . . . . . . . . . . . . 14
⊢ ℝ
⊆ ℝ* |
92 | 90, 91 | sstrdi 3929 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ℕ
⊆ ℝ*) |
93 | | imassrn 5969 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 “ ℕ) ⊆ ran
𝐺 |
94 | 4 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝐺:ℕ⟶𝑍) |
95 | 94 | frnd 6592 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ran
𝐺 ⊆ 𝑍) |
96 | 93, 95 | sstrid 3928 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆ 𝑍) |
97 | 96, 77 | sstrdi 3929 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆
ℝ) |
98 | 97, 91 | sstrdi 3929 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆
ℝ*) |
99 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈
ℕ) |
100 | 64 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) →
sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈
ℕ) |
101 | | leisorel 14102 |
. . . . . . . . . . . . 13
⊢ ((𝐺 Isom < , < (ℕ,
(𝐺 “ ℕ)) ∧
(ℕ ⊆ ℝ* ∧ (𝐺 “ ℕ) ⊆
ℝ*) ∧ (𝑥 ∈ ℕ ∧ sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ)) →
(𝑥 ≤ sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) ↔ (𝐺‘𝑥) ≤ (𝐺‘sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )))) |
102 | 89, 92, 98, 99, 100, 101 | syl122anc 1377 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) ↔ (𝐺‘𝑥) ≤ (𝐺‘sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )))) |
103 | 78, 21 | eleqtrdi 2849 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺‘𝑥) ∈ (ℤ≥‘𝑀)) |
104 | | elfz5 13177 |
. . . . . . . . . . . . 13
⊢ (((𝐺‘𝑥) ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → ((𝐺‘𝑥) ∈ (𝑀...𝑁) ↔ (𝐺‘𝑥) ≤ 𝑁)) |
105 | 103, 84, 104 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ((𝐺‘𝑥) ∈ (𝑀...𝑁) ↔ (𝐺‘𝑥) ≤ 𝑁)) |
106 | 88, 102, 105 | 3imtr4d 293 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) → (𝐺‘𝑥) ∈ (𝑀...𝑁))) |
107 | | elpreima 6917 |
. . . . . . . . . . . . 13
⊢ (𝐺 Fn ℕ → (𝑥 ∈ (◡𝐺 “ (𝑀...𝑁)) ↔ (𝑥 ∈ ℕ ∧ (𝐺‘𝑥) ∈ (𝑀...𝑁)))) |
108 | 107 | baibd 539 |
. . . . . . . . . . . 12
⊢ ((𝐺 Fn ℕ ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (◡𝐺 “ (𝑀...𝑁)) ↔ (𝐺‘𝑥) ∈ (𝑀...𝑁))) |
109 | 55, 108 | sylan 579 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (◡𝐺 “ (𝑀...𝑁)) ↔ (𝐺‘𝑥) ∈ (𝑀...𝑁))) |
110 | 106, 109 | sylibrd 258 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) → 𝑥 ∈ (◡𝐺 “ (𝑀...𝑁)))) |
111 | | fimaxre2 11850 |
. . . . . . . . . . . . 13
⊢ (((◡𝐺 “ (𝑀...𝑁)) ⊆ ℝ ∧ (◡𝐺 “ (𝑀...𝑁)) ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (◡𝐺 “ (𝑀...𝑁))𝑦 ≤ 𝑥) |
112 | 61, 45, 111 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (◡𝐺 “ (𝑀...𝑁))𝑦 ≤ 𝑥) |
113 | | suprub 11866 |
. . . . . . . . . . . . 13
⊢ ((((◡𝐺 “ (𝑀...𝑁)) ⊆ ℝ ∧ (◡𝐺 “ (𝑀...𝑁)) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (◡𝐺 “ (𝑀...𝑁))𝑦 ≤ 𝑥) ∧ 𝑥 ∈ (◡𝐺 “ (𝑀...𝑁))) → 𝑥 ≤ sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) |
114 | 113 | ex 412 |
. . . . . . . . . . . 12
⊢ (((◡𝐺 “ (𝑀...𝑁)) ⊆ ℝ ∧ (◡𝐺 “ (𝑀...𝑁)) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (◡𝐺 “ (𝑀...𝑁))𝑦 ≤ 𝑥) → (𝑥 ∈ (◡𝐺 “ (𝑀...𝑁)) → 𝑥 ≤ sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ))) |
115 | 61, 59, 112, 114 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝑥 ∈ (◡𝐺 “ (𝑀...𝑁)) → 𝑥 ≤ sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ))) |
116 | 115 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (◡𝐺 “ (𝑀...𝑁)) → 𝑥 ≤ sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ))) |
117 | 110, 116 | impbid 211 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) ↔ 𝑥 ∈ (◡𝐺 “ (𝑀...𝑁)))) |
118 | 67, 117 | bitrd 278 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (1...sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ∈ (◡𝐺 “ (𝑀...𝑁)))) |
119 | 118 | ex 412 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝑥 ∈ ℕ → (𝑥 ∈ (1...sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ∈ (◡𝐺 “ (𝑀...𝑁))))) |
120 | 2, 7, 119 | pm5.21ndd 380 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝑥 ∈ (1...sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ∈ (◡𝐺 “ (𝑀...𝑁)))) |
121 | 120 | eqrdv 2736 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) →
(1...sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) = (◡𝐺 “ (𝑀...𝑁))) |
122 | 121 | fveq2d 6760 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) →
(♯‘(1...sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ))) =
(♯‘(◡𝐺 “ (𝑀...𝑁)))) |
123 | 64 | nnnn0d 12223 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈
ℕ0) |
124 | | hashfz1 13988 |
. . . . 5
⊢
(sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈
ℕ0 → (♯‘(1...sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ))) = sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) |
125 | 123, 124 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) →
(♯‘(1...sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ))) = sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) |
126 | | hashen 13989 |
. . . . . 6
⊢ (((◡𝐺 “ (𝑀...𝑁)) ∈ Fin ∧ (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) ∈ Fin) →
((♯‘(◡𝐺 “ (𝑀...𝑁))) = (♯‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) ↔ (◡𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) |
127 | 45, 19, 126 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) →
((♯‘(◡𝐺 “ (𝑀...𝑁))) = (♯‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) ↔ (◡𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) |
128 | 43, 127 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) →
(♯‘(◡𝐺 “ (𝑀...𝑁))) = (♯‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) |
129 | 122, 125,
128 | 3eqtr3d 2786 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < ) = (♯‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) |
130 | 129 | oveq2d 7271 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) →
(1...sup((◡𝐺 “ (𝑀...𝑁)), ℝ, < )) =
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁)))))) |
131 | 130, 121 | eqtr3d 2780 |
1
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) →
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))) = (◡𝐺 “ (𝑀...𝑁))) |