MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem2 Structured version   Visualization version   GIF version

Theorem isercolllem2 15591
Description: Lemma for isercoll 15593. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z 𝑍 = (ℤ𝑀)
isercoll.m (𝜑𝑀 ∈ ℤ)
isercoll.g (𝜑𝐺:ℕ⟶𝑍)
isercoll.i ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
Assertion
Ref Expression
isercolllem2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) = (𝐺 “ (𝑀...𝑁)))
Distinct variable groups:   𝑘,𝑁   𝜑,𝑘   𝑘,𝐺   𝑘,𝑀
Allowed substitution hint:   𝑍(𝑘)

Proof of Theorem isercolllem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfznn 13474 . . . . . . . 8 (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) → 𝑥 ∈ ℕ)
21a1i 11 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) → 𝑥 ∈ ℕ))
3 cnvimass 6037 . . . . . . . . 9 (𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺
4 isercoll.g . . . . . . . . . 10 (𝜑𝐺:ℕ⟶𝑍)
54adantr 480 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝐺:ℕ⟶𝑍)
63, 5fssdm 6675 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ⊆ ℕ)
76sseld 3936 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) → 𝑥 ∈ ℕ))
8 id 22 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ)
9 nnuz 12796 . . . . . . . . . . 11 ℕ = (ℤ‘1)
108, 9eleqtrdi 2838 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ∈ (ℤ‘1))
11 ltso 11214 . . . . . . . . . . . . . 14 < Or ℝ
1211a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → < Or ℝ)
13 fzfid 13898 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑀...𝑁) ∈ Fin)
14 ffun 6659 . . . . . . . . . . . . . . . . 17 (𝐺:ℕ⟶𝑍 → Fun 𝐺)
15 funimacnv 6567 . . . . . . . . . . . . . . . . 17 (Fun 𝐺 → (𝐺 “ (𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺))
165, 14, 153syl 18 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺))
17 inss1 4190 . . . . . . . . . . . . . . . 16 ((𝑀...𝑁) ∩ ran 𝐺) ⊆ (𝑀...𝑁)
1816, 17eqsstrdi 3982 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ⊆ (𝑀...𝑁))
1913, 18ssfid 9170 . . . . . . . . . . . . . 14 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ∈ Fin)
20 ssid 3960 . . . . . . . . . . . . . . . . . . . . 21 ℕ ⊆ ℕ
21 isercoll.z . . . . . . . . . . . . . . . . . . . . . 22 𝑍 = (ℤ𝑀)
22 isercoll.m . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑀 ∈ ℤ)
23 isercoll.i . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
2421, 22, 4, 23isercolllem1 15590 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ℕ ⊆ ℕ) → (𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)))
2520, 24mpan2 691 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)))
26 ffn 6656 . . . . . . . . . . . . . . . . . . . . 21 (𝐺:ℕ⟶𝑍𝐺 Fn ℕ)
27 fnresdm 6605 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 Fn ℕ → (𝐺 ↾ ℕ) = 𝐺)
28 isoeq1 7258 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ↾ ℕ) = 𝐺 → ((𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)) ↔ 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ))))
294, 26, 27, 284syl 19 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)) ↔ 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ))))
3025, 29mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)))
31 isof1o 7264 . . . . . . . . . . . . . . . . . . 19 (𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)) → 𝐺:ℕ–1-1-onto→(𝐺 “ ℕ))
32 f1ocnv 6780 . . . . . . . . . . . . . . . . . . 19 (𝐺:ℕ–1-1-onto→(𝐺 “ ℕ) → 𝐺:(𝐺 “ ℕ)–1-1-onto→ℕ)
33 f1ofun 6770 . . . . . . . . . . . . . . . . . . 19 (𝐺:(𝐺 “ ℕ)–1-1-onto→ℕ → Fun 𝐺)
3430, 31, 32, 334syl 19 . . . . . . . . . . . . . . . . . 18 (𝜑 → Fun 𝐺)
35 df-f1 6491 . . . . . . . . . . . . . . . . . 18 (𝐺:ℕ–1-1𝑍 ↔ (𝐺:ℕ⟶𝑍 ∧ Fun 𝐺))
364, 34, 35sylanbrc 583 . . . . . . . . . . . . . . . . 17 (𝜑𝐺:ℕ–1-1𝑍)
3736adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝐺:ℕ–1-1𝑍)
38 nnex 12152 . . . . . . . . . . . . . . . . 17 ℕ ∈ V
39 ssexg 5265 . . . . . . . . . . . . . . . . 17 (((𝐺 “ (𝑀...𝑁)) ⊆ ℕ ∧ ℕ ∈ V) → (𝐺 “ (𝑀...𝑁)) ∈ V)
406, 38, 39sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ∈ V)
41 f1imaeng 8946 . . . . . . . . . . . . . . . 16 ((𝐺:ℕ–1-1𝑍 ∧ (𝐺 “ (𝑀...𝑁)) ⊆ ℕ ∧ (𝐺 “ (𝑀...𝑁)) ∈ V) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ≈ (𝐺 “ (𝑀...𝑁)))
4237, 6, 40, 41syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ≈ (𝐺 “ (𝑀...𝑁)))
4342ensymd 8937 . . . . . . . . . . . . . 14 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (𝐺 “ (𝑀...𝑁))))
44 enfii 9110 . . . . . . . . . . . . . 14 (((𝐺 “ (𝐺 “ (𝑀...𝑁))) ∈ Fin ∧ (𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (𝐺 “ (𝑀...𝑁)))) → (𝐺 “ (𝑀...𝑁)) ∈ Fin)
4519, 43, 44syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ∈ Fin)
46 1nn 12157 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
4746a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 1 ∈ ℕ)
48 ffvelcdm 7019 . . . . . . . . . . . . . . . . . . 19 ((𝐺:ℕ⟶𝑍 ∧ 1 ∈ ℕ) → (𝐺‘1) ∈ 𝑍)
494, 46, 48sylancl 586 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺‘1) ∈ 𝑍)
5049, 21eleqtrdi 2838 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺‘1) ∈ (ℤ𝑀))
5150adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘1) ∈ (ℤ𝑀))
52 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝑁 ∈ (ℤ‘(𝐺‘1)))
53 elfzuzb 13439 . . . . . . . . . . . . . . . 16 ((𝐺‘1) ∈ (𝑀...𝑁) ↔ ((𝐺‘1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ‘(𝐺‘1))))
5451, 52, 53sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘1) ∈ (𝑀...𝑁))
555ffnd 6657 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝐺 Fn ℕ)
56 elpreima 6996 . . . . . . . . . . . . . . . 16 (𝐺 Fn ℕ → (1 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁))))
5755, 56syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁))))
5847, 54, 57mpbir2and 713 . . . . . . . . . . . . . 14 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 1 ∈ (𝐺 “ (𝑀...𝑁)))
5958ne0d 4295 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ≠ ∅)
60 nnssre 12150 . . . . . . . . . . . . . 14 ℕ ⊆ ℝ
616, 60sstrdi 3950 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ⊆ ℝ)
62 fisupcl 9379 . . . . . . . . . . . . 13 (( < Or ℝ ∧ ((𝐺 “ (𝑀...𝑁)) ∈ Fin ∧ (𝐺 “ (𝑀...𝑁)) ≠ ∅ ∧ (𝐺 “ (𝑀...𝑁)) ⊆ ℝ)) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (𝐺 “ (𝑀...𝑁)))
6312, 45, 59, 61, 62syl13anc 1374 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (𝐺 “ (𝑀...𝑁)))
646, 63sseldd 3938 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ)
6564nnzd 12516 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℤ)
66 elfz5 13437 . . . . . . . . . 10 ((𝑥 ∈ (ℤ‘1) ∧ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℤ) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
6710, 65, 66syl2anr 597 . . . . . . . . 9 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
68 elpreima 6996 . . . . . . . . . . . . . . . . 17 (𝐺 Fn ℕ → (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (𝐺 “ (𝑀...𝑁)) ↔ (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁))))
6955, 68syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (𝐺 “ (𝑀...𝑁)) ↔ (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁))))
7063, 69mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁)))
71 elfzle2 13449 . . . . . . . . . . . . . . 15 ((𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁)
7270, 71simpl2im 503 . . . . . . . . . . . . . 14 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁)
7372adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁)
74 uzssz 12774 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) ⊆ ℤ
7521, 74eqsstri 3984 . . . . . . . . . . . . . . . 16 𝑍 ⊆ ℤ
76 zssre 12496 . . . . . . . . . . . . . . . 16 ℤ ⊆ ℝ
7775, 76sstri 3947 . . . . . . . . . . . . . . 15 𝑍 ⊆ ℝ
785ffvelcdmda 7022 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ 𝑍)
7977, 78sselid 3935 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ ℝ)
805, 64ffvelcdmd 7023 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ 𝑍)
8180adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ 𝑍)
8277, 81sselid 3935 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ ℝ)
83 eluzelz 12763 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘(𝐺‘1)) → 𝑁 ∈ ℤ)
8483ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℤ)
8576, 84sselid 3935 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℝ)
86 letr 11228 . . . . . . . . . . . . . 14 (((𝐺𝑥) ∈ ℝ ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁) → (𝐺𝑥) ≤ 𝑁))
8779, 82, 85, 86syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (((𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁) → (𝐺𝑥) ≤ 𝑁))
8873, 87mpan2d 694 . . . . . . . . . . . 12 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ((𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) → (𝐺𝑥) ≤ 𝑁))
8930ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)))
9060a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ℕ ⊆ ℝ)
91 ressxr 11178 . . . . . . . . . . . . . 14 ℝ ⊆ ℝ*
9290, 91sstrdi 3950 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ℕ ⊆ ℝ*)
93 imassrn 6026 . . . . . . . . . . . . . . . 16 (𝐺 “ ℕ) ⊆ ran 𝐺
944ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝐺:ℕ⟶𝑍)
9594frnd 6664 . . . . . . . . . . . . . . . 16 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ran 𝐺𝑍)
9693, 95sstrid 3949 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆ 𝑍)
9796, 77sstrdi 3950 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆ ℝ)
9897, 91sstrdi 3950 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆ ℝ*)
99 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
10064adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ)
101 leisorel 14385 . . . . . . . . . . . . 13 ((𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)) ∧ (ℕ ⊆ ℝ* ∧ (𝐺 “ ℕ) ⊆ ℝ*) ∧ (𝑥 ∈ ℕ ∧ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ)) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ↔ (𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))))
10289, 92, 98, 99, 100, 101syl122anc 1381 . . . . . . . . . . . 12 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ↔ (𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))))
10378, 21eleqtrdi 2838 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ (ℤ𝑀))
104 elfz5 13437 . . . . . . . . . . . . 13 (((𝐺𝑥) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → ((𝐺𝑥) ∈ (𝑀...𝑁) ↔ (𝐺𝑥) ≤ 𝑁))
105103, 84, 104syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ((𝐺𝑥) ∈ (𝑀...𝑁) ↔ (𝐺𝑥) ≤ 𝑁))
10688, 102, 1053imtr4d 294 . . . . . . . . . . 11 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) → (𝐺𝑥) ∈ (𝑀...𝑁)))
107 elpreima 6996 . . . . . . . . . . . . 13 (𝐺 Fn ℕ → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (𝑥 ∈ ℕ ∧ (𝐺𝑥) ∈ (𝑀...𝑁))))
108107baibd 539 . . . . . . . . . . . 12 ((𝐺 Fn ℕ ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (𝐺𝑥) ∈ (𝑀...𝑁)))
10955, 108sylan 580 . . . . . . . . . . 11 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (𝐺𝑥) ∈ (𝑀...𝑁)))
110106, 109sylibrd 259 . . . . . . . . . 10 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) → 𝑥 ∈ (𝐺 “ (𝑀...𝑁))))
111 fimaxre2 12088 . . . . . . . . . . . . 13 (((𝐺 “ (𝑀...𝑁)) ⊆ ℝ ∧ (𝐺 “ (𝑀...𝑁)) ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐺 “ (𝑀...𝑁))𝑦𝑥)
11261, 45, 111syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐺 “ (𝑀...𝑁))𝑦𝑥)
113 suprub 12104 . . . . . . . . . . . . 13 ((((𝐺 “ (𝑀...𝑁)) ⊆ ℝ ∧ (𝐺 “ (𝑀...𝑁)) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐺 “ (𝑀...𝑁))𝑦𝑥) ∧ 𝑥 ∈ (𝐺 “ (𝑀...𝑁))) → 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))
114113ex 412 . . . . . . . . . . . 12 (((𝐺 “ (𝑀...𝑁)) ⊆ ℝ ∧ (𝐺 “ (𝑀...𝑁)) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐺 “ (𝑀...𝑁))𝑦𝑥) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) → 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
11561, 59, 112, 114syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) → 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
116115adantr 480 . . . . . . . . . 10 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) → 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
117110, 116impbid 212 . . . . . . . . 9 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ↔ 𝑥 ∈ (𝐺 “ (𝑀...𝑁))))
11867, 117bitrd 279 . . . . . . . 8 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ∈ (𝐺 “ (𝑀...𝑁))))
119118ex 412 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ ℕ → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ∈ (𝐺 “ (𝑀...𝑁)))))
1202, 7, 119pm5.21ndd 379 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ∈ (𝐺 “ (𝑀...𝑁))))
121120eqrdv 2727 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) = (𝐺 “ (𝑀...𝑁)))
122121fveq2d 6830 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (♯‘(1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))) = (♯‘(𝐺 “ (𝑀...𝑁))))
12364nnnn0d 12463 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ0)
124 hashfz1 14271 . . . . 5 (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ0 → (♯‘(1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))) = sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))
125123, 124syl 17 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (♯‘(1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))) = sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))
126 hashen 14272 . . . . . 6 (((𝐺 “ (𝑀...𝑁)) ∈ Fin ∧ (𝐺 “ (𝐺 “ (𝑀...𝑁))) ∈ Fin) → ((♯‘(𝐺 “ (𝑀...𝑁))) = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
12745, 19, 126syl2anc 584 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((♯‘(𝐺 “ (𝑀...𝑁))) = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
12843, 127mpbird 257 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (♯‘(𝐺 “ (𝑀...𝑁))) = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))
129122, 125, 1283eqtr3d 2772 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))
130129oveq2d 7369 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) = (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))))
131130, 121eqtr3d 2766 1 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) = (𝐺 “ (𝑀...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3438  cin 3904  wss 3905  c0 4286   class class class wbr 5095   Or wor 5530  ccnv 5622  ran crn 5624  cres 5625  cima 5626  Fun wfun 6480   Fn wfn 6481  wf 6482  1-1wf1 6483  1-1-ontowf1o 6485  cfv 6486   Isom wiso 6487  (class class class)co 7353  cen 8876  Fincfn 8879  supcsup 9349  cr 11027  1c1 11029   + caddc 11031  *cxr 11167   < clt 11168  cle 11169  cn 12146  0cn0 12402  cz 12489  cuz 12753  ...cfz 13428  chash 14255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-hash 14256
This theorem is referenced by:  isercolllem3  15592
  Copyright terms: Public domain W3C validator