MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem2 Structured version   Visualization version   GIF version

Theorem isercolllem2 15698
Description: Lemma for isercoll 15700. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z 𝑍 = (ℤ𝑀)
isercoll.m (𝜑𝑀 ∈ ℤ)
isercoll.g (𝜑𝐺:ℕ⟶𝑍)
isercoll.i ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
Assertion
Ref Expression
isercolllem2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) = (𝐺 “ (𝑀...𝑁)))
Distinct variable groups:   𝑘,𝑁   𝜑,𝑘   𝑘,𝐺   𝑘,𝑀
Allowed substitution hint:   𝑍(𝑘)

Proof of Theorem isercolllem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfznn 13589 . . . . . . . 8 (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) → 𝑥 ∈ ℕ)
21a1i 11 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) → 𝑥 ∈ ℕ))
3 cnvimass 6101 . . . . . . . . 9 (𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺
4 isercoll.g . . . . . . . . . 10 (𝜑𝐺:ℕ⟶𝑍)
54adantr 480 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝐺:ℕ⟶𝑍)
63, 5fssdm 6755 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ⊆ ℕ)
76sseld 3993 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) → 𝑥 ∈ ℕ))
8 id 22 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ)
9 nnuz 12918 . . . . . . . . . . 11 ℕ = (ℤ‘1)
108, 9eleqtrdi 2848 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ∈ (ℤ‘1))
11 ltso 11338 . . . . . . . . . . . . . 14 < Or ℝ
1211a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → < Or ℝ)
13 fzfid 14010 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑀...𝑁) ∈ Fin)
14 ffun 6739 . . . . . . . . . . . . . . . . 17 (𝐺:ℕ⟶𝑍 → Fun 𝐺)
15 funimacnv 6648 . . . . . . . . . . . . . . . . 17 (Fun 𝐺 → (𝐺 “ (𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺))
165, 14, 153syl 18 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺))
17 inss1 4244 . . . . . . . . . . . . . . . 16 ((𝑀...𝑁) ∩ ran 𝐺) ⊆ (𝑀...𝑁)
1816, 17eqsstrdi 4049 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ⊆ (𝑀...𝑁))
1913, 18ssfid 9298 . . . . . . . . . . . . . 14 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ∈ Fin)
20 ssid 4017 . . . . . . . . . . . . . . . . . . . . 21 ℕ ⊆ ℕ
21 isercoll.z . . . . . . . . . . . . . . . . . . . . . 22 𝑍 = (ℤ𝑀)
22 isercoll.m . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑀 ∈ ℤ)
23 isercoll.i . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
2421, 22, 4, 23isercolllem1 15697 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ℕ ⊆ ℕ) → (𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)))
2520, 24mpan2 691 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)))
26 ffn 6736 . . . . . . . . . . . . . . . . . . . . 21 (𝐺:ℕ⟶𝑍𝐺 Fn ℕ)
27 fnresdm 6687 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 Fn ℕ → (𝐺 ↾ ℕ) = 𝐺)
28 isoeq1 7336 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ↾ ℕ) = 𝐺 → ((𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)) ↔ 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ))))
294, 26, 27, 284syl 19 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐺 ↾ ℕ) Isom < , < (ℕ, (𝐺 “ ℕ)) ↔ 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ))))
3025, 29mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)))
31 isof1o 7342 . . . . . . . . . . . . . . . . . . 19 (𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)) → 𝐺:ℕ–1-1-onto→(𝐺 “ ℕ))
32 f1ocnv 6860 . . . . . . . . . . . . . . . . . . 19 (𝐺:ℕ–1-1-onto→(𝐺 “ ℕ) → 𝐺:(𝐺 “ ℕ)–1-1-onto→ℕ)
33 f1ofun 6850 . . . . . . . . . . . . . . . . . . 19 (𝐺:(𝐺 “ ℕ)–1-1-onto→ℕ → Fun 𝐺)
3430, 31, 32, 334syl 19 . . . . . . . . . . . . . . . . . 18 (𝜑 → Fun 𝐺)
35 df-f1 6567 . . . . . . . . . . . . . . . . . 18 (𝐺:ℕ–1-1𝑍 ↔ (𝐺:ℕ⟶𝑍 ∧ Fun 𝐺))
364, 34, 35sylanbrc 583 . . . . . . . . . . . . . . . . 17 (𝜑𝐺:ℕ–1-1𝑍)
3736adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝐺:ℕ–1-1𝑍)
38 nnex 12269 . . . . . . . . . . . . . . . . 17 ℕ ∈ V
39 ssexg 5328 . . . . . . . . . . . . . . . . 17 (((𝐺 “ (𝑀...𝑁)) ⊆ ℕ ∧ ℕ ∈ V) → (𝐺 “ (𝑀...𝑁)) ∈ V)
406, 38, 39sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ∈ V)
41 f1imaeng 9052 . . . . . . . . . . . . . . . 16 ((𝐺:ℕ–1-1𝑍 ∧ (𝐺 “ (𝑀...𝑁)) ⊆ ℕ ∧ (𝐺 “ (𝑀...𝑁)) ∈ V) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ≈ (𝐺 “ (𝑀...𝑁)))
4237, 6, 40, 41syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ≈ (𝐺 “ (𝑀...𝑁)))
4342ensymd 9043 . . . . . . . . . . . . . 14 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (𝐺 “ (𝑀...𝑁))))
44 enfii 9223 . . . . . . . . . . . . . 14 (((𝐺 “ (𝐺 “ (𝑀...𝑁))) ∈ Fin ∧ (𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (𝐺 “ (𝑀...𝑁)))) → (𝐺 “ (𝑀...𝑁)) ∈ Fin)
4519, 43, 44syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ∈ Fin)
46 1nn 12274 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
4746a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 1 ∈ ℕ)
48 ffvelcdm 7100 . . . . . . . . . . . . . . . . . . 19 ((𝐺:ℕ⟶𝑍 ∧ 1 ∈ ℕ) → (𝐺‘1) ∈ 𝑍)
494, 46, 48sylancl 586 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺‘1) ∈ 𝑍)
5049, 21eleqtrdi 2848 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺‘1) ∈ (ℤ𝑀))
5150adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘1) ∈ (ℤ𝑀))
52 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝑁 ∈ (ℤ‘(𝐺‘1)))
53 elfzuzb 13554 . . . . . . . . . . . . . . . 16 ((𝐺‘1) ∈ (𝑀...𝑁) ↔ ((𝐺‘1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ‘(𝐺‘1))))
5451, 52, 53sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘1) ∈ (𝑀...𝑁))
555ffnd 6737 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝐺 Fn ℕ)
56 elpreima 7077 . . . . . . . . . . . . . . . 16 (𝐺 Fn ℕ → (1 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁))))
5755, 56syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁))))
5847, 54, 57mpbir2and 713 . . . . . . . . . . . . . 14 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 1 ∈ (𝐺 “ (𝑀...𝑁)))
5958ne0d 4347 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ≠ ∅)
60 nnssre 12267 . . . . . . . . . . . . . 14 ℕ ⊆ ℝ
616, 60sstrdi 4007 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ⊆ ℝ)
62 fisupcl 9506 . . . . . . . . . . . . 13 (( < Or ℝ ∧ ((𝐺 “ (𝑀...𝑁)) ∈ Fin ∧ (𝐺 “ (𝑀...𝑁)) ≠ ∅ ∧ (𝐺 “ (𝑀...𝑁)) ⊆ ℝ)) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (𝐺 “ (𝑀...𝑁)))
6312, 45, 59, 61, 62syl13anc 1371 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (𝐺 “ (𝑀...𝑁)))
646, 63sseldd 3995 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ)
6564nnzd 12637 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℤ)
66 elfz5 13552 . . . . . . . . . 10 ((𝑥 ∈ (ℤ‘1) ∧ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℤ) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
6710, 65, 66syl2anr 597 . . . . . . . . 9 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
68 elpreima 7077 . . . . . . . . . . . . . . . . 17 (𝐺 Fn ℕ → (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (𝐺 “ (𝑀...𝑁)) ↔ (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁))))
6955, 68syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ (𝐺 “ (𝑀...𝑁)) ↔ (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁))))
7063, 69mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁)))
71 elfzle2 13564 . . . . . . . . . . . . . . 15 ((𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ (𝑀...𝑁) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁)
7270, 71simpl2im 503 . . . . . . . . . . . . . 14 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁)
7372adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁)
74 uzssz 12896 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) ⊆ ℤ
7521, 74eqsstri 4029 . . . . . . . . . . . . . . . 16 𝑍 ⊆ ℤ
76 zssre 12617 . . . . . . . . . . . . . . . 16 ℤ ⊆ ℝ
7775, 76sstri 4004 . . . . . . . . . . . . . . 15 𝑍 ⊆ ℝ
785ffvelcdmda 7103 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ 𝑍)
7977, 78sselid 3992 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ ℝ)
805, 64ffvelcdmd 7104 . . . . . . . . . . . . . . . 16 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ 𝑍)
8180adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ 𝑍)
8277, 81sselid 3992 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ ℝ)
83 eluzelz 12885 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘(𝐺‘1)) → 𝑁 ∈ ℤ)
8483ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℤ)
8576, 84sselid 3992 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℝ)
86 letr 11352 . . . . . . . . . . . . . 14 (((𝐺𝑥) ∈ ℝ ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁) → (𝐺𝑥) ≤ 𝑁))
8779, 82, 85, 86syl3anc 1370 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (((𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ∧ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ≤ 𝑁) → (𝐺𝑥) ≤ 𝑁))
8873, 87mpan2d 694 . . . . . . . . . . . 12 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ((𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) → (𝐺𝑥) ≤ 𝑁))
8930ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)))
9060a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ℕ ⊆ ℝ)
91 ressxr 11302 . . . . . . . . . . . . . 14 ℝ ⊆ ℝ*
9290, 91sstrdi 4007 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ℕ ⊆ ℝ*)
93 imassrn 6090 . . . . . . . . . . . . . . . 16 (𝐺 “ ℕ) ⊆ ran 𝐺
944ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝐺:ℕ⟶𝑍)
9594frnd 6744 . . . . . . . . . . . . . . . 16 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ran 𝐺𝑍)
9693, 95sstrid 4006 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆ 𝑍)
9796, 77sstrdi 4007 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆ ℝ)
9897, 91sstrdi 4007 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺 “ ℕ) ⊆ ℝ*)
99 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
10064adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ)
101 leisorel 14495 . . . . . . . . . . . . 13 ((𝐺 Isom < , < (ℕ, (𝐺 “ ℕ)) ∧ (ℕ ⊆ ℝ* ∧ (𝐺 “ ℕ) ⊆ ℝ*) ∧ (𝑥 ∈ ℕ ∧ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ)) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ↔ (𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))))
10289, 92, 98, 99, 100, 101syl122anc 1378 . . . . . . . . . . . 12 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ↔ (𝐺𝑥) ≤ (𝐺‘sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))))
10378, 21eleqtrdi 2848 . . . . . . . . . . . . 13 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ (ℤ𝑀))
104 elfz5 13552 . . . . . . . . . . . . 13 (((𝐺𝑥) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → ((𝐺𝑥) ∈ (𝑀...𝑁) ↔ (𝐺𝑥) ≤ 𝑁))
105103, 84, 104syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → ((𝐺𝑥) ∈ (𝑀...𝑁) ↔ (𝐺𝑥) ≤ 𝑁))
10688, 102, 1053imtr4d 294 . . . . . . . . . . 11 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) → (𝐺𝑥) ∈ (𝑀...𝑁)))
107 elpreima 7077 . . . . . . . . . . . . 13 (𝐺 Fn ℕ → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (𝑥 ∈ ℕ ∧ (𝐺𝑥) ∈ (𝑀...𝑁))))
108107baibd 539 . . . . . . . . . . . 12 ((𝐺 Fn ℕ ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (𝐺𝑥) ∈ (𝑀...𝑁)))
10955, 108sylan 580 . . . . . . . . . . 11 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (𝐺𝑥) ∈ (𝑀...𝑁)))
110106, 109sylibrd 259 . . . . . . . . . 10 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) → 𝑥 ∈ (𝐺 “ (𝑀...𝑁))))
111 fimaxre2 12210 . . . . . . . . . . . . 13 (((𝐺 “ (𝑀...𝑁)) ⊆ ℝ ∧ (𝐺 “ (𝑀...𝑁)) ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐺 “ (𝑀...𝑁))𝑦𝑥)
11261, 45, 111syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐺 “ (𝑀...𝑁))𝑦𝑥)
113 suprub 12226 . . . . . . . . . . . . 13 ((((𝐺 “ (𝑀...𝑁)) ⊆ ℝ ∧ (𝐺 “ (𝑀...𝑁)) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐺 “ (𝑀...𝑁))𝑦𝑥) ∧ 𝑥 ∈ (𝐺 “ (𝑀...𝑁))) → 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))
114113ex 412 . . . . . . . . . . . 12 (((𝐺 “ (𝑀...𝑁)) ⊆ ℝ ∧ (𝐺 “ (𝑀...𝑁)) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐺 “ (𝑀...𝑁))𝑦𝑥) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) → 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
11561, 59, 112, 114syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) → 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
116115adantr 480 . . . . . . . . . 10 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (𝐺 “ (𝑀...𝑁)) → 𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < )))
117110, 116impbid 212 . . . . . . . . 9 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ↔ 𝑥 ∈ (𝐺 “ (𝑀...𝑁))))
11867, 117bitrd 279 . . . . . . . 8 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ∈ (𝐺 “ (𝑀...𝑁))))
119118ex 412 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ ℕ → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ∈ (𝐺 “ (𝑀...𝑁)))))
1202, 7, 119pm5.21ndd 379 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑥 ∈ (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) ↔ 𝑥 ∈ (𝐺 “ (𝑀...𝑁))))
121120eqrdv 2732 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) = (𝐺 “ (𝑀...𝑁)))
122121fveq2d 6910 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (♯‘(1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))) = (♯‘(𝐺 “ (𝑀...𝑁))))
12364nnnn0d 12584 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ0)
124 hashfz1 14381 . . . . 5 (sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) ∈ ℕ0 → (♯‘(1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))) = sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))
125123, 124syl 17 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (♯‘(1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))) = sup((𝐺 “ (𝑀...𝑁)), ℝ, < ))
126 hashen 14382 . . . . . 6 (((𝐺 “ (𝑀...𝑁)) ∈ Fin ∧ (𝐺 “ (𝐺 “ (𝑀...𝑁))) ∈ Fin) → ((♯‘(𝐺 “ (𝑀...𝑁))) = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
12745, 19, 126syl2anc 584 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((♯‘(𝐺 “ (𝑀...𝑁))) = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 “ (𝑀...𝑁)) ≈ (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
12843, 127mpbird 257 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (♯‘(𝐺 “ (𝑀...𝑁))) = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))
129122, 125, 1283eqtr3d 2782 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → sup((𝐺 “ (𝑀...𝑁)), ℝ, < ) = (♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))
130129oveq2d 7446 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...sup((𝐺 “ (𝑀...𝑁)), ℝ, < )) = (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))))
131130, 121eqtr3d 2776 1 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) = (𝐺 “ (𝑀...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  Vcvv 3477  cin 3961  wss 3962  c0 4338   class class class wbr 5147   Or wor 5595  ccnv 5687  ran crn 5689  cres 5690  cima 5691  Fun wfun 6556   Fn wfn 6557  wf 6558  1-1wf1 6559  1-1-ontowf1o 6561  cfv 6562   Isom wiso 6563  (class class class)co 7430  cen 8980  Fincfn 8983  supcsup 9477  cr 11151  1c1 11153   + caddc 11155  *cxr 11291   < clt 11292  cle 11293  cn 12263  0cn0 12523  cz 12610  cuz 12875  ...cfz 13543  chash 14365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-hash 14366
This theorem is referenced by:  isercolllem3  15699
  Copyright terms: Public domain W3C validator