MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem5 Structured version   Visualization version   GIF version

Theorem wlkp1lem5 28045
Description: Lemma for wlkp1 28049. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v 𝑉 = (Vtx‘𝐺)
wlkp1.i 𝐼 = (iEdg‘𝐺)
wlkp1.f (𝜑 → Fun 𝐼)
wlkp1.a (𝜑𝐼 ∈ Fin)
wlkp1.b (𝜑𝐵𝑊)
wlkp1.c (𝜑𝐶𝑉)
wlkp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
wlkp1.w (𝜑𝐹(Walks‘𝐺)𝑃)
wlkp1.n 𝑁 = (♯‘𝐹)
wlkp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
wlkp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
wlkp1.u (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
wlkp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
wlkp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
wlkp1.s (𝜑 → (Vtx‘𝑆) = 𝑉)
Assertion
Ref Expression
wlkp1lem5 (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄𝑘) = (𝑃𝑘))
Distinct variable group:   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝑃(𝑘)   𝑄(𝑘)   𝑆(𝑘)   𝐸(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝐼(𝑘)   𝑁(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem wlkp1lem5
StepHypRef Expression
1 wlkp1.q . . . 4 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
21fveq1i 6775 . . 3 (𝑄𝑘) = ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘𝑘)
3 fzp1nel 13340 . . . . . . . . 9 ¬ (𝑁 + 1) ∈ (0...𝑁)
4 eleq1 2826 . . . . . . . . . . 11 (𝑘 = (𝑁 + 1) → (𝑘 ∈ (0...𝑁) ↔ (𝑁 + 1) ∈ (0...𝑁)))
54notbid 318 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → (¬ 𝑘 ∈ (0...𝑁) ↔ ¬ (𝑁 + 1) ∈ (0...𝑁)))
65eqcoms 2746 . . . . . . . . 9 ((𝑁 + 1) = 𝑘 → (¬ 𝑘 ∈ (0...𝑁) ↔ ¬ (𝑁 + 1) ∈ (0...𝑁)))
73, 6mpbiri 257 . . . . . . . 8 ((𝑁 + 1) = 𝑘 → ¬ 𝑘 ∈ (0...𝑁))
87a1i 11 . . . . . . 7 (𝜑 → ((𝑁 + 1) = 𝑘 → ¬ 𝑘 ∈ (0...𝑁)))
98con2d 134 . . . . . 6 (𝜑 → (𝑘 ∈ (0...𝑁) → ¬ (𝑁 + 1) = 𝑘))
109imp 407 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ¬ (𝑁 + 1) = 𝑘)
1110neqned 2950 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁 + 1) ≠ 𝑘)
12 fvunsn 7051 . . . 4 ((𝑁 + 1) ≠ 𝑘 → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘𝑘) = (𝑃𝑘))
1311, 12syl 17 . . 3 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘𝑘) = (𝑃𝑘))
142, 13eqtrid 2790 . 2 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑄𝑘) = (𝑃𝑘))
1514ralrimiva 3103 1 (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄𝑘) = (𝑃𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  cun 3885  wss 3887  {csn 4561  {cpr 4563  cop 4567   class class class wbr 5074  dom cdm 5589  Fun wfun 6427  cfv 6433  (class class class)co 7275  Fincfn 8733  0cc0 10871  1c1 10872   + caddc 10874  ...cfz 13239  chash 14044  Vtxcvtx 27366  iEdgciedg 27367  Edgcedg 27417  Walkscwlks 27963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-z 12320  df-fz 13240
This theorem is referenced by:  wlkp1lem6  28046  wlkp1lem7  28047  wlkp1lem8  28048  eupth2eucrct  28581
  Copyright terms: Public domain W3C validator