| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkp1lem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for wlkp1 29616. (Contributed by AV, 6-Mar-2021.) |
| Ref | Expression |
|---|---|
| wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
| wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
| wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
| wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
| wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
| wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
| wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
| wlkp1.q | ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) |
| wlkp1.s | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
| Ref | Expression |
|---|---|
| wlkp1lem5 | ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄‘𝑘) = (𝑃‘𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.q | . . . 4 ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) | |
| 2 | 1 | fveq1i 6862 | . . 3 ⊢ (𝑄‘𝑘) = ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘𝑘) |
| 3 | fzp1nel 13579 | . . . . . . . . 9 ⊢ ¬ (𝑁 + 1) ∈ (0...𝑁) | |
| 4 | eleq1 2817 | . . . . . . . . . . 11 ⊢ (𝑘 = (𝑁 + 1) → (𝑘 ∈ (0...𝑁) ↔ (𝑁 + 1) ∈ (0...𝑁))) | |
| 5 | 4 | notbid 318 | . . . . . . . . . 10 ⊢ (𝑘 = (𝑁 + 1) → (¬ 𝑘 ∈ (0...𝑁) ↔ ¬ (𝑁 + 1) ∈ (0...𝑁))) |
| 6 | 5 | eqcoms 2738 | . . . . . . . . 9 ⊢ ((𝑁 + 1) = 𝑘 → (¬ 𝑘 ∈ (0...𝑁) ↔ ¬ (𝑁 + 1) ∈ (0...𝑁))) |
| 7 | 3, 6 | mpbiri 258 | . . . . . . . 8 ⊢ ((𝑁 + 1) = 𝑘 → ¬ 𝑘 ∈ (0...𝑁)) |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ((𝑁 + 1) = 𝑘 → ¬ 𝑘 ∈ (0...𝑁))) |
| 9 | 8 | con2d 134 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ (0...𝑁) → ¬ (𝑁 + 1) = 𝑘)) |
| 10 | 9 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ¬ (𝑁 + 1) = 𝑘) |
| 11 | 10 | neqned 2933 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑁 + 1) ≠ 𝑘) |
| 12 | fvunsn 7156 | . . . 4 ⊢ ((𝑁 + 1) ≠ 𝑘 → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘𝑘) = (𝑃‘𝑘)) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘𝑘) = (𝑃‘𝑘)) |
| 14 | 2, 13 | eqtrid 2777 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑄‘𝑘) = (𝑃‘𝑘)) |
| 15 | 14 | ralrimiva 3126 | 1 ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄‘𝑘) = (𝑃‘𝑘)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∪ cun 3915 ⊆ wss 3917 {csn 4592 {cpr 4594 〈cop 4598 class class class wbr 5110 dom cdm 5641 Fun wfun 6508 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 0cc0 11075 1c1 11076 + caddc 11078 ...cfz 13475 ♯chash 14302 Vtxcvtx 28930 iEdgciedg 28931 Edgcedg 28981 Walkscwlks 29531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-z 12537 df-fz 13476 |
| This theorem is referenced by: wlkp1lem6 29613 wlkp1lem7 29614 wlkp1lem8 29615 eupth2eucrct 30153 |
| Copyright terms: Public domain | W3C validator |