![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkp1lem5 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 29206. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | β’ π = (VtxβπΊ) |
wlkp1.i | β’ πΌ = (iEdgβπΊ) |
wlkp1.f | β’ (π β Fun πΌ) |
wlkp1.a | β’ (π β πΌ β Fin) |
wlkp1.b | β’ (π β π΅ β π) |
wlkp1.c | β’ (π β πΆ β π) |
wlkp1.d | β’ (π β Β¬ π΅ β dom πΌ) |
wlkp1.w | β’ (π β πΉ(WalksβπΊ)π) |
wlkp1.n | β’ π = (β―βπΉ) |
wlkp1.e | β’ (π β πΈ β (EdgβπΊ)) |
wlkp1.x | β’ (π β {(πβπ), πΆ} β πΈ) |
wlkp1.u | β’ (π β (iEdgβπ) = (πΌ βͺ {β¨π΅, πΈβ©})) |
wlkp1.h | β’ π» = (πΉ βͺ {β¨π, π΅β©}) |
wlkp1.q | β’ π = (π βͺ {β¨(π + 1), πΆβ©}) |
wlkp1.s | β’ (π β (Vtxβπ) = π) |
Ref | Expression |
---|---|
wlkp1lem5 | β’ (π β βπ β (0...π)(πβπ) = (πβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.q | . . . 4 β’ π = (π βͺ {β¨(π + 1), πΆβ©}) | |
2 | 1 | fveq1i 6892 | . . 3 β’ (πβπ) = ((π βͺ {β¨(π + 1), πΆβ©})βπ) |
3 | fzp1nel 13590 | . . . . . . . . 9 β’ Β¬ (π + 1) β (0...π) | |
4 | eleq1 2820 | . . . . . . . . . . 11 β’ (π = (π + 1) β (π β (0...π) β (π + 1) β (0...π))) | |
5 | 4 | notbid 318 | . . . . . . . . . 10 β’ (π = (π + 1) β (Β¬ π β (0...π) β Β¬ (π + 1) β (0...π))) |
6 | 5 | eqcoms 2739 | . . . . . . . . 9 β’ ((π + 1) = π β (Β¬ π β (0...π) β Β¬ (π + 1) β (0...π))) |
7 | 3, 6 | mpbiri 258 | . . . . . . . 8 β’ ((π + 1) = π β Β¬ π β (0...π)) |
8 | 7 | a1i 11 | . . . . . . 7 β’ (π β ((π + 1) = π β Β¬ π β (0...π))) |
9 | 8 | con2d 134 | . . . . . 6 β’ (π β (π β (0...π) β Β¬ (π + 1) = π)) |
10 | 9 | imp 406 | . . . . 5 β’ ((π β§ π β (0...π)) β Β¬ (π + 1) = π) |
11 | 10 | neqned 2946 | . . . 4 β’ ((π β§ π β (0...π)) β (π + 1) β π) |
12 | fvunsn 7179 | . . . 4 β’ ((π + 1) β π β ((π βͺ {β¨(π + 1), πΆβ©})βπ) = (πβπ)) | |
13 | 11, 12 | syl 17 | . . 3 β’ ((π β§ π β (0...π)) β ((π βͺ {β¨(π + 1), πΆβ©})βπ) = (πβπ)) |
14 | 2, 13 | eqtrid 2783 | . 2 β’ ((π β§ π β (0...π)) β (πβπ) = (πβπ)) |
15 | 14 | ralrimiva 3145 | 1 β’ (π β βπ β (0...π)(πβπ) = (πβπ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 β wne 2939 βwral 3060 βͺ cun 3946 β wss 3948 {csn 4628 {cpr 4630 β¨cop 4634 class class class wbr 5148 dom cdm 5676 Fun wfun 6537 βcfv 6543 (class class class)co 7412 Fincfn 8942 0cc0 11113 1c1 11114 + caddc 11116 ...cfz 13489 β―chash 14295 Vtxcvtx 28524 iEdgciedg 28525 Edgcedg 28575 Walkscwlks 29121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7978 df-2nd 7979 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-z 12564 df-fz 13490 |
This theorem is referenced by: wlkp1lem6 29203 wlkp1lem7 29204 wlkp1lem8 29205 eupth2eucrct 29738 |
Copyright terms: Public domain | W3C validator |