MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem5 Structured version   Visualization version   GIF version

Theorem wlkp1lem5 27028
Description: Lemma for wlkp1 27032. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v 𝑉 = (Vtx‘𝐺)
wlkp1.i 𝐼 = (iEdg‘𝐺)
wlkp1.f (𝜑 → Fun 𝐼)
wlkp1.a (𝜑𝐼 ∈ Fin)
wlkp1.b (𝜑𝐵 ∈ V)
wlkp1.c (𝜑𝐶𝑉)
wlkp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
wlkp1.w (𝜑𝐹(Walks‘𝐺)𝑃)
wlkp1.n 𝑁 = (♯‘𝐹)
wlkp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
wlkp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
wlkp1.u (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
wlkp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
wlkp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
wlkp1.s (𝜑 → (Vtx‘𝑆) = 𝑉)
Assertion
Ref Expression
wlkp1lem5 (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄𝑘) = (𝑃𝑘))
Distinct variable group:   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝑃(𝑘)   𝑄(𝑘)   𝑆(𝑘)   𝐸(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝐼(𝑘)   𝑁(𝑘)   𝑉(𝑘)

Proof of Theorem wlkp1lem5
StepHypRef Expression
1 wlkp1.q . . . 4 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
21fveq1i 6447 . . 3 (𝑄𝑘) = ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘𝑘)
3 fzp1nel 12742 . . . . . . . . 9 ¬ (𝑁 + 1) ∈ (0...𝑁)
4 eleq1 2846 . . . . . . . . . . 11 (𝑘 = (𝑁 + 1) → (𝑘 ∈ (0...𝑁) ↔ (𝑁 + 1) ∈ (0...𝑁)))
54notbid 310 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → (¬ 𝑘 ∈ (0...𝑁) ↔ ¬ (𝑁 + 1) ∈ (0...𝑁)))
65eqcoms 2785 . . . . . . . . 9 ((𝑁 + 1) = 𝑘 → (¬ 𝑘 ∈ (0...𝑁) ↔ ¬ (𝑁 + 1) ∈ (0...𝑁)))
73, 6mpbiri 250 . . . . . . . 8 ((𝑁 + 1) = 𝑘 → ¬ 𝑘 ∈ (0...𝑁))
87a1i 11 . . . . . . 7 (𝜑 → ((𝑁 + 1) = 𝑘 → ¬ 𝑘 ∈ (0...𝑁)))
98con2d 132 . . . . . 6 (𝜑 → (𝑘 ∈ (0...𝑁) → ¬ (𝑁 + 1) = 𝑘))
109imp 397 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ¬ (𝑁 + 1) = 𝑘)
1110neqned 2975 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁 + 1) ≠ 𝑘)
12 fvunsn 6712 . . . 4 ((𝑁 + 1) ≠ 𝑘 → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘𝑘) = (𝑃𝑘))
1311, 12syl 17 . . 3 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘𝑘) = (𝑃𝑘))
142, 13syl5eq 2825 . 2 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑄𝑘) = (𝑃𝑘))
1514ralrimiva 3147 1 (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄𝑘) = (𝑃𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1601  wcel 2106  wne 2968  wral 3089  Vcvv 3397  cun 3789  wss 3791  {csn 4397  {cpr 4399  cop 4403   class class class wbr 4886  dom cdm 5355  Fun wfun 6129  cfv 6135  (class class class)co 6922  Fincfn 8241  0cc0 10272  1c1 10273   + caddc 10275  ...cfz 12643  chash 13435  Vtxcvtx 26344  iEdgciedg 26345  Edgcedg 26395  Walkscwlks 26944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-z 11729  df-fz 12644
This theorem is referenced by:  wlkp1lem6  27029  wlkp1lem7  27030  wlkp1lem8  27031  eupth2eucrct  27621
  Copyright terms: Public domain W3C validator