MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem5 Structured version   Visualization version   GIF version

Theorem wlkp1lem5 27465
Description: Lemma for wlkp1 27469. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v 𝑉 = (Vtx‘𝐺)
wlkp1.i 𝐼 = (iEdg‘𝐺)
wlkp1.f (𝜑 → Fun 𝐼)
wlkp1.a (𝜑𝐼 ∈ Fin)
wlkp1.b (𝜑𝐵𝑊)
wlkp1.c (𝜑𝐶𝑉)
wlkp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
wlkp1.w (𝜑𝐹(Walks‘𝐺)𝑃)
wlkp1.n 𝑁 = (♯‘𝐹)
wlkp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
wlkp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
wlkp1.u (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
wlkp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
wlkp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
wlkp1.s (𝜑 → (Vtx‘𝑆) = 𝑉)
Assertion
Ref Expression
wlkp1lem5 (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄𝑘) = (𝑃𝑘))
Distinct variable group:   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝑃(𝑘)   𝑄(𝑘)   𝑆(𝑘)   𝐸(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝐼(𝑘)   𝑁(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem wlkp1lem5
StepHypRef Expression
1 wlkp1.q . . . 4 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
21fveq1i 6660 . . 3 (𝑄𝑘) = ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘𝑘)
3 fzp1nel 12993 . . . . . . . . 9 ¬ (𝑁 + 1) ∈ (0...𝑁)
4 eleq1 2903 . . . . . . . . . . 11 (𝑘 = (𝑁 + 1) → (𝑘 ∈ (0...𝑁) ↔ (𝑁 + 1) ∈ (0...𝑁)))
54notbid 321 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → (¬ 𝑘 ∈ (0...𝑁) ↔ ¬ (𝑁 + 1) ∈ (0...𝑁)))
65eqcoms 2832 . . . . . . . . 9 ((𝑁 + 1) = 𝑘 → (¬ 𝑘 ∈ (0...𝑁) ↔ ¬ (𝑁 + 1) ∈ (0...𝑁)))
73, 6mpbiri 261 . . . . . . . 8 ((𝑁 + 1) = 𝑘 → ¬ 𝑘 ∈ (0...𝑁))
87a1i 11 . . . . . . 7 (𝜑 → ((𝑁 + 1) = 𝑘 → ¬ 𝑘 ∈ (0...𝑁)))
98con2d 136 . . . . . 6 (𝜑 → (𝑘 ∈ (0...𝑁) → ¬ (𝑁 + 1) = 𝑘))
109imp 410 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ¬ (𝑁 + 1) = 𝑘)
1110neqned 3021 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁 + 1) ≠ 𝑘)
12 fvunsn 6930 . . . 4 ((𝑁 + 1) ≠ 𝑘 → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘𝑘) = (𝑃𝑘))
1311, 12syl 17 . . 3 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘𝑘) = (𝑃𝑘))
142, 13syl5eq 2871 . 2 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑄𝑘) = (𝑃𝑘))
1514ralrimiva 3177 1 (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄𝑘) = (𝑃𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014  wral 3133  cun 3917  wss 3919  {csn 4550  {cpr 4552  cop 4556   class class class wbr 5053  dom cdm 5543  Fun wfun 6338  cfv 6344  (class class class)co 7146  Fincfn 8501  0cc0 10531  1c1 10532   + caddc 10534  ...cfz 12892  chash 13693  Vtxcvtx 26787  iEdgciedg 26788  Edgcedg 26838  Walkscwlks 27384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-po 5462  df-so 5463  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-1st 7681  df-2nd 7682  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-z 11977  df-fz 12893
This theorem is referenced by:  wlkp1lem6  27466  wlkp1lem7  27467  wlkp1lem8  27468  eupth2eucrct  28000
  Copyright terms: Public domain W3C validator