| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkp1lem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for wlkp1 29607. (Contributed by AV, 6-Mar-2021.) |
| Ref | Expression |
|---|---|
| wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
| wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
| wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
| wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
| wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
| wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
| wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
| wlkp1.q | ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) |
| wlkp1.s | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
| Ref | Expression |
|---|---|
| wlkp1lem5 | ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄‘𝑘) = (𝑃‘𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.q | . . . 4 ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) | |
| 2 | 1 | fveq1i 6876 | . . 3 ⊢ (𝑄‘𝑘) = ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘𝑘) |
| 3 | fzp1nel 13626 | . . . . . . . . 9 ⊢ ¬ (𝑁 + 1) ∈ (0...𝑁) | |
| 4 | eleq1 2822 | . . . . . . . . . . 11 ⊢ (𝑘 = (𝑁 + 1) → (𝑘 ∈ (0...𝑁) ↔ (𝑁 + 1) ∈ (0...𝑁))) | |
| 5 | 4 | notbid 318 | . . . . . . . . . 10 ⊢ (𝑘 = (𝑁 + 1) → (¬ 𝑘 ∈ (0...𝑁) ↔ ¬ (𝑁 + 1) ∈ (0...𝑁))) |
| 6 | 5 | eqcoms 2743 | . . . . . . . . 9 ⊢ ((𝑁 + 1) = 𝑘 → (¬ 𝑘 ∈ (0...𝑁) ↔ ¬ (𝑁 + 1) ∈ (0...𝑁))) |
| 7 | 3, 6 | mpbiri 258 | . . . . . . . 8 ⊢ ((𝑁 + 1) = 𝑘 → ¬ 𝑘 ∈ (0...𝑁)) |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ((𝑁 + 1) = 𝑘 → ¬ 𝑘 ∈ (0...𝑁))) |
| 9 | 8 | con2d 134 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ (0...𝑁) → ¬ (𝑁 + 1) = 𝑘)) |
| 10 | 9 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ¬ (𝑁 + 1) = 𝑘) |
| 11 | 10 | neqned 2939 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑁 + 1) ≠ 𝑘) |
| 12 | fvunsn 7170 | . . . 4 ⊢ ((𝑁 + 1) ≠ 𝑘 → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘𝑘) = (𝑃‘𝑘)) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘𝑘) = (𝑃‘𝑘)) |
| 14 | 2, 13 | eqtrid 2782 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑄‘𝑘) = (𝑃‘𝑘)) |
| 15 | 14 | ralrimiva 3132 | 1 ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄‘𝑘) = (𝑃‘𝑘)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∪ cun 3924 ⊆ wss 3926 {csn 4601 {cpr 4603 〈cop 4607 class class class wbr 5119 dom cdm 5654 Fun wfun 6524 ‘cfv 6530 (class class class)co 7403 Fincfn 8957 0cc0 11127 1c1 11128 + caddc 11130 ...cfz 13522 ♯chash 14346 Vtxcvtx 28921 iEdgciedg 28922 Edgcedg 28972 Walkscwlks 29522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-z 12587 df-fz 13523 |
| This theorem is referenced by: wlkp1lem6 29604 wlkp1lem7 29605 wlkp1lem8 29606 eupth2eucrct 30144 |
| Copyright terms: Public domain | W3C validator |