![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkp1lem5 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 27032. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ V) |
wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
wlkp1.q | ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) |
wlkp1.s | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
Ref | Expression |
---|---|
wlkp1lem5 | ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄‘𝑘) = (𝑃‘𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.q | . . . 4 ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) | |
2 | 1 | fveq1i 6447 | . . 3 ⊢ (𝑄‘𝑘) = ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘𝑘) |
3 | fzp1nel 12742 | . . . . . . . . 9 ⊢ ¬ (𝑁 + 1) ∈ (0...𝑁) | |
4 | eleq1 2846 | . . . . . . . . . . 11 ⊢ (𝑘 = (𝑁 + 1) → (𝑘 ∈ (0...𝑁) ↔ (𝑁 + 1) ∈ (0...𝑁))) | |
5 | 4 | notbid 310 | . . . . . . . . . 10 ⊢ (𝑘 = (𝑁 + 1) → (¬ 𝑘 ∈ (0...𝑁) ↔ ¬ (𝑁 + 1) ∈ (0...𝑁))) |
6 | 5 | eqcoms 2785 | . . . . . . . . 9 ⊢ ((𝑁 + 1) = 𝑘 → (¬ 𝑘 ∈ (0...𝑁) ↔ ¬ (𝑁 + 1) ∈ (0...𝑁))) |
7 | 3, 6 | mpbiri 250 | . . . . . . . 8 ⊢ ((𝑁 + 1) = 𝑘 → ¬ 𝑘 ∈ (0...𝑁)) |
8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ((𝑁 + 1) = 𝑘 → ¬ 𝑘 ∈ (0...𝑁))) |
9 | 8 | con2d 132 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ (0...𝑁) → ¬ (𝑁 + 1) = 𝑘)) |
10 | 9 | imp 397 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ¬ (𝑁 + 1) = 𝑘) |
11 | 10 | neqned 2975 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑁 + 1) ≠ 𝑘) |
12 | fvunsn 6712 | . . . 4 ⊢ ((𝑁 + 1) ≠ 𝑘 → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘𝑘) = (𝑃‘𝑘)) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘𝑘) = (𝑃‘𝑘)) |
14 | 2, 13 | syl5eq 2825 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑄‘𝑘) = (𝑃‘𝑘)) |
15 | 14 | ralrimiva 3147 | 1 ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄‘𝑘) = (𝑃‘𝑘)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ≠ wne 2968 ∀wral 3089 Vcvv 3397 ∪ cun 3789 ⊆ wss 3791 {csn 4397 {cpr 4399 〈cop 4403 class class class wbr 4886 dom cdm 5355 Fun wfun 6129 ‘cfv 6135 (class class class)co 6922 Fincfn 8241 0cc0 10272 1c1 10273 + caddc 10275 ...cfz 12643 ♯chash 13435 Vtxcvtx 26344 iEdgciedg 26345 Edgcedg 26395 Walkscwlks 26944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-z 11729 df-fz 12644 |
This theorem is referenced by: wlkp1lem6 27029 wlkp1lem7 27030 wlkp1lem8 27031 eupth2eucrct 27621 |
Copyright terms: Public domain | W3C validator |