| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkp1lem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for wlkp1 29699. (Contributed by AV, 6-Mar-2021.) |
| Ref | Expression |
|---|---|
| wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
| wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
| wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
| wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
| wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
| wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
| wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
| wlkp1.q | ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) |
| wlkp1.s | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
| Ref | Expression |
|---|---|
| wlkp1lem5 | ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄‘𝑘) = (𝑃‘𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.q | . . . 4 ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) | |
| 2 | 1 | fveq1i 6907 | . . 3 ⊢ (𝑄‘𝑘) = ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘𝑘) |
| 3 | fzp1nel 13651 | . . . . . . . . 9 ⊢ ¬ (𝑁 + 1) ∈ (0...𝑁) | |
| 4 | eleq1 2829 | . . . . . . . . . . 11 ⊢ (𝑘 = (𝑁 + 1) → (𝑘 ∈ (0...𝑁) ↔ (𝑁 + 1) ∈ (0...𝑁))) | |
| 5 | 4 | notbid 318 | . . . . . . . . . 10 ⊢ (𝑘 = (𝑁 + 1) → (¬ 𝑘 ∈ (0...𝑁) ↔ ¬ (𝑁 + 1) ∈ (0...𝑁))) |
| 6 | 5 | eqcoms 2745 | . . . . . . . . 9 ⊢ ((𝑁 + 1) = 𝑘 → (¬ 𝑘 ∈ (0...𝑁) ↔ ¬ (𝑁 + 1) ∈ (0...𝑁))) |
| 7 | 3, 6 | mpbiri 258 | . . . . . . . 8 ⊢ ((𝑁 + 1) = 𝑘 → ¬ 𝑘 ∈ (0...𝑁)) |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ((𝑁 + 1) = 𝑘 → ¬ 𝑘 ∈ (0...𝑁))) |
| 9 | 8 | con2d 134 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ (0...𝑁) → ¬ (𝑁 + 1) = 𝑘)) |
| 10 | 9 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ¬ (𝑁 + 1) = 𝑘) |
| 11 | 10 | neqned 2947 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑁 + 1) ≠ 𝑘) |
| 12 | fvunsn 7199 | . . . 4 ⊢ ((𝑁 + 1) ≠ 𝑘 → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘𝑘) = (𝑃‘𝑘)) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘𝑘) = (𝑃‘𝑘)) |
| 14 | 2, 13 | eqtrid 2789 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑄‘𝑘) = (𝑃‘𝑘)) |
| 15 | 14 | ralrimiva 3146 | 1 ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄‘𝑘) = (𝑃‘𝑘)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∪ cun 3949 ⊆ wss 3951 {csn 4626 {cpr 4628 〈cop 4632 class class class wbr 5143 dom cdm 5685 Fun wfun 6555 ‘cfv 6561 (class class class)co 7431 Fincfn 8985 0cc0 11155 1c1 11156 + caddc 11158 ...cfz 13547 ♯chash 14369 Vtxcvtx 29013 iEdgciedg 29014 Edgcedg 29064 Walkscwlks 29614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-z 12614 df-fz 13548 |
| This theorem is referenced by: wlkp1lem6 29696 wlkp1lem7 29697 wlkp1lem8 29698 eupth2eucrct 30236 |
| Copyright terms: Public domain | W3C validator |