Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wlkp1lem5 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 27951. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
wlkp1.q | ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) |
wlkp1.s | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
Ref | Expression |
---|---|
wlkp1lem5 | ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄‘𝑘) = (𝑃‘𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.q | . . . 4 ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) | |
2 | 1 | fveq1i 6757 | . . 3 ⊢ (𝑄‘𝑘) = ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘𝑘) |
3 | fzp1nel 13269 | . . . . . . . . 9 ⊢ ¬ (𝑁 + 1) ∈ (0...𝑁) | |
4 | eleq1 2826 | . . . . . . . . . . 11 ⊢ (𝑘 = (𝑁 + 1) → (𝑘 ∈ (0...𝑁) ↔ (𝑁 + 1) ∈ (0...𝑁))) | |
5 | 4 | notbid 317 | . . . . . . . . . 10 ⊢ (𝑘 = (𝑁 + 1) → (¬ 𝑘 ∈ (0...𝑁) ↔ ¬ (𝑁 + 1) ∈ (0...𝑁))) |
6 | 5 | eqcoms 2746 | . . . . . . . . 9 ⊢ ((𝑁 + 1) = 𝑘 → (¬ 𝑘 ∈ (0...𝑁) ↔ ¬ (𝑁 + 1) ∈ (0...𝑁))) |
7 | 3, 6 | mpbiri 257 | . . . . . . . 8 ⊢ ((𝑁 + 1) = 𝑘 → ¬ 𝑘 ∈ (0...𝑁)) |
8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ((𝑁 + 1) = 𝑘 → ¬ 𝑘 ∈ (0...𝑁))) |
9 | 8 | con2d 134 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ (0...𝑁) → ¬ (𝑁 + 1) = 𝑘)) |
10 | 9 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ¬ (𝑁 + 1) = 𝑘) |
11 | 10 | neqned 2949 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑁 + 1) ≠ 𝑘) |
12 | fvunsn 7033 | . . . 4 ⊢ ((𝑁 + 1) ≠ 𝑘 → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘𝑘) = (𝑃‘𝑘)) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘𝑘) = (𝑃‘𝑘)) |
14 | 2, 13 | syl5eq 2791 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑄‘𝑘) = (𝑃‘𝑘)) |
15 | 14 | ralrimiva 3107 | 1 ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄‘𝑘) = (𝑃‘𝑘)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∪ cun 3881 ⊆ wss 3883 {csn 4558 {cpr 4560 〈cop 4564 class class class wbr 5070 dom cdm 5580 Fun wfun 6412 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 0cc0 10802 1c1 10803 + caddc 10805 ...cfz 13168 ♯chash 13972 Vtxcvtx 27269 iEdgciedg 27270 Edgcedg 27320 Walkscwlks 27866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-z 12250 df-fz 13169 |
This theorem is referenced by: wlkp1lem6 27948 wlkp1lem7 27949 wlkp1lem8 27950 eupth2eucrct 28482 |
Copyright terms: Public domain | W3C validator |