MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cats1un Structured version   Visualization version   GIF version

Theorem cats1un 14769
Description: Express a word with an extra symbol as the union of the word and the new value. (Contributed by Mario Carneiro, 28-Feb-2016.)
Assertion
Ref Expression
cats1un ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩) = (𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩}))

Proof of Theorem cats1un
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ccatws1cl 14664 . . . . 5 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩) ∈ Word 𝑋)
2 wrdf 14567 . . . . 5 ((𝐴 ++ ⟨“𝐵”⟩) ∈ Word 𝑋 → (𝐴 ++ ⟨“𝐵”⟩):(0..^(♯‘(𝐴 ++ ⟨“𝐵”⟩)))⟶𝑋)
31, 2syl 17 . . . 4 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩):(0..^(♯‘(𝐴 ++ ⟨“𝐵”⟩)))⟶𝑋)
4 ccatws1len 14668 . . . . . . . 8 (𝐴 ∈ Word 𝑋 → (♯‘(𝐴 ++ ⟨“𝐵”⟩)) = ((♯‘𝐴) + 1))
54oveq2d 7464 . . . . . . 7 (𝐴 ∈ Word 𝑋 → (0..^(♯‘(𝐴 ++ ⟨“𝐵”⟩))) = (0..^((♯‘𝐴) + 1)))
6 lencl 14581 . . . . . . . . 9 (𝐴 ∈ Word 𝑋 → (♯‘𝐴) ∈ ℕ0)
7 nn0uz 12945 . . . . . . . . 9 0 = (ℤ‘0)
86, 7eleqtrdi 2854 . . . . . . . 8 (𝐴 ∈ Word 𝑋 → (♯‘𝐴) ∈ (ℤ‘0))
9 fzosplitsn 13825 . . . . . . . 8 ((♯‘𝐴) ∈ (ℤ‘0) → (0..^((♯‘𝐴) + 1)) = ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
108, 9syl 17 . . . . . . 7 (𝐴 ∈ Word 𝑋 → (0..^((♯‘𝐴) + 1)) = ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
115, 10eqtrd 2780 . . . . . 6 (𝐴 ∈ Word 𝑋 → (0..^(♯‘(𝐴 ++ ⟨“𝐵”⟩))) = ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
1211adantr 480 . . . . 5 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (0..^(♯‘(𝐴 ++ ⟨“𝐵”⟩))) = ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
1312feq2d 6733 . . . 4 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((𝐴 ++ ⟨“𝐵”⟩):(0..^(♯‘(𝐴 ++ ⟨“𝐵”⟩)))⟶𝑋 ↔ (𝐴 ++ ⟨“𝐵”⟩):((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})⟶𝑋))
143, 13mpbid 232 . . 3 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩):((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})⟶𝑋)
1514ffnd 6748 . 2 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩) Fn ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
16 wrdf 14567 . . . . 5 (𝐴 ∈ Word 𝑋𝐴:(0..^(♯‘𝐴))⟶𝑋)
1716adantr 480 . . . 4 ((𝐴 ∈ Word 𝑋𝐵𝑋) → 𝐴:(0..^(♯‘𝐴))⟶𝑋)
18 eqid 2740 . . . . . 6 {⟨(♯‘𝐴), 𝐵⟩} = {⟨(♯‘𝐴), 𝐵⟩}
19 fsng 7171 . . . . . 6 (((♯‘𝐴) ∈ ℕ0𝐵𝑋) → ({⟨(♯‘𝐴), 𝐵⟩}:{(♯‘𝐴)}⟶{𝐵} ↔ {⟨(♯‘𝐴), 𝐵⟩} = {⟨(♯‘𝐴), 𝐵⟩}))
2018, 19mpbiri 258 . . . . 5 (((♯‘𝐴) ∈ ℕ0𝐵𝑋) → {⟨(♯‘𝐴), 𝐵⟩}:{(♯‘𝐴)}⟶{𝐵})
216, 20sylan 579 . . . 4 ((𝐴 ∈ Word 𝑋𝐵𝑋) → {⟨(♯‘𝐴), 𝐵⟩}:{(♯‘𝐴)}⟶{𝐵})
22 fzodisjsn 13754 . . . . 5 ((0..^(♯‘𝐴)) ∩ {(♯‘𝐴)}) = ∅
2322a1i 11 . . . 4 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((0..^(♯‘𝐴)) ∩ {(♯‘𝐴)}) = ∅)
24 fun 6783 . . . 4 (((𝐴:(0..^(♯‘𝐴))⟶𝑋 ∧ {⟨(♯‘𝐴), 𝐵⟩}:{(♯‘𝐴)}⟶{𝐵}) ∧ ((0..^(♯‘𝐴)) ∩ {(♯‘𝐴)}) = ∅) → (𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩}):((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})⟶(𝑋 ∪ {𝐵}))
2517, 21, 23, 24syl21anc 837 . . 3 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩}):((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})⟶(𝑋 ∪ {𝐵}))
2625ffnd 6748 . 2 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩}) Fn ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
27 elun 4176 . . 3 (𝑥 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}) ↔ (𝑥 ∈ (0..^(♯‘𝐴)) ∨ 𝑥 ∈ {(♯‘𝐴)}))
28 ccats1val1 14674 . . . . . 6 ((𝐴 ∈ Word 𝑋𝑥 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = (𝐴𝑥))
2928adantlr 714 . . . . 5 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = (𝐴𝑥))
30 simpr 484 . . . . . . . 8 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ (0..^(♯‘𝐴))) → 𝑥 ∈ (0..^(♯‘𝐴)))
31 fzonel 13730 . . . . . . . 8 ¬ (♯‘𝐴) ∈ (0..^(♯‘𝐴))
32 nelne2 3046 . . . . . . . 8 ((𝑥 ∈ (0..^(♯‘𝐴)) ∧ ¬ (♯‘𝐴) ∈ (0..^(♯‘𝐴))) → 𝑥 ≠ (♯‘𝐴))
3330, 31, 32sylancl 585 . . . . . . 7 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ (0..^(♯‘𝐴))) → 𝑥 ≠ (♯‘𝐴))
3433necomd 3002 . . . . . 6 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ (0..^(♯‘𝐴))) → (♯‘𝐴) ≠ 𝑥)
35 fvunsn 7213 . . . . . 6 ((♯‘𝐴) ≠ 𝑥 → ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘𝑥) = (𝐴𝑥))
3634, 35syl 17 . . . . 5 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ (0..^(♯‘𝐴))) → ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘𝑥) = (𝐴𝑥))
3729, 36eqtr4d 2783 . . . 4 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘𝑥))
38 fvexd 6935 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (♯‘𝐴) ∈ V)
39 simpr 484 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵𝑋) → 𝐵𝑋)
4017fdmd 6757 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑋𝐵𝑋) → dom 𝐴 = (0..^(♯‘𝐴)))
4140eleq2d 2830 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((♯‘𝐴) ∈ dom 𝐴 ↔ (♯‘𝐴) ∈ (0..^(♯‘𝐴))))
4231, 41mtbiri 327 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ¬ (♯‘𝐴) ∈ dom 𝐴)
43 fsnunfv 7221 . . . . . . . 8 (((♯‘𝐴) ∈ V ∧ 𝐵𝑋 ∧ ¬ (♯‘𝐴) ∈ dom 𝐴) → ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘(♯‘𝐴)) = 𝐵)
4438, 39, 42, 43syl3anc 1371 . . . . . . 7 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘(♯‘𝐴)) = 𝐵)
45 simpl 482 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋𝐵𝑋) → 𝐴 ∈ Word 𝑋)
46 s1cl 14650 . . . . . . . . . 10 (𝐵𝑋 → ⟨“𝐵”⟩ ∈ Word 𝑋)
4746adantl 481 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ⟨“𝐵”⟩ ∈ Word 𝑋)
48 s1len 14654 . . . . . . . . . . . 12 (♯‘⟨“𝐵”⟩) = 1
49 1nn 12304 . . . . . . . . . . . 12 1 ∈ ℕ
5048, 49eqeltri 2840 . . . . . . . . . . 11 (♯‘⟨“𝐵”⟩) ∈ ℕ
51 lbfzo0 13756 . . . . . . . . . . 11 (0 ∈ (0..^(♯‘⟨“𝐵”⟩)) ↔ (♯‘⟨“𝐵”⟩) ∈ ℕ)
5250, 51mpbir 231 . . . . . . . . . 10 0 ∈ (0..^(♯‘⟨“𝐵”⟩))
5352a1i 11 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋𝐵𝑋) → 0 ∈ (0..^(♯‘⟨“𝐵”⟩)))
54 ccatval3 14627 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋 ∧ ⟨“𝐵”⟩ ∈ Word 𝑋 ∧ 0 ∈ (0..^(♯‘⟨“𝐵”⟩))) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (♯‘𝐴))) = (⟨“𝐵”⟩‘0))
5545, 47, 53, 54syl3anc 1371 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (♯‘𝐴))) = (⟨“𝐵”⟩‘0))
56 s1fv 14658 . . . . . . . . 9 (𝐵𝑋 → (⟨“𝐵”⟩‘0) = 𝐵)
5756adantl 481 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (⟨“𝐵”⟩‘0) = 𝐵)
5855, 57eqtrd 2780 . . . . . . 7 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (♯‘𝐴))) = 𝐵)
596adantr 480 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (♯‘𝐴) ∈ ℕ0)
6059nn0cnd 12615 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (♯‘𝐴) ∈ ℂ)
6160addlidd 11491 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (0 + (♯‘𝐴)) = (♯‘𝐴))
6261fveq2d 6924 . . . . . . 7 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (♯‘𝐴))) = ((𝐴 ++ ⟨“𝐵”⟩)‘(♯‘𝐴)))
6344, 58, 623eqtr2rd 2787 . . . . . 6 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((𝐴 ++ ⟨“𝐵”⟩)‘(♯‘𝐴)) = ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘(♯‘𝐴)))
64 elsni 4665 . . . . . . . 8 (𝑥 ∈ {(♯‘𝐴)} → 𝑥 = (♯‘𝐴))
6564fveq2d 6924 . . . . . . 7 (𝑥 ∈ {(♯‘𝐴)} → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ++ ⟨“𝐵”⟩)‘(♯‘𝐴)))
6664fveq2d 6924 . . . . . . 7 (𝑥 ∈ {(♯‘𝐴)} → ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘𝑥) = ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘(♯‘𝐴)))
6765, 66eqeq12d 2756 . . . . . 6 (𝑥 ∈ {(♯‘𝐴)} → (((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘𝑥) ↔ ((𝐴 ++ ⟨“𝐵”⟩)‘(♯‘𝐴)) = ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘(♯‘𝐴))))
6863, 67syl5ibrcom 247 . . . . 5 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝑥 ∈ {(♯‘𝐴)} → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘𝑥)))
6968imp 406 . . . 4 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ {(♯‘𝐴)}) → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘𝑥))
7037, 69jaodan 958 . . 3 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ (𝑥 ∈ (0..^(♯‘𝐴)) ∨ 𝑥 ∈ {(♯‘𝐴)})) → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘𝑥))
7127, 70sylan2b 593 . 2 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})) → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘𝑥))
7215, 26, 71eqfnfvd 7067 1 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩) = (𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cun 3974  cin 3975  c0 4352  {csn 4648  cop 4654  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  cn 12293  0cn0 12553  cuz 12903  ..^cfzo 13711  chash 14379  Word cword 14562   ++ cconcat 14618  ⟨“cs1 14643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644
This theorem is referenced by:  s2prop  14956  s3tpop  14958  s4prop  14959  pgpfaclem1  20125  vdegp1ai  29572  vdegp1bi  29573  wwlksnext  29926
  Copyright terms: Public domain W3C validator