MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cats1un Structured version   Visualization version   GIF version

Theorem cats1un 14645
Description: Express a word with an extra symbol as the union of the word and the new value. (Contributed by Mario Carneiro, 28-Feb-2016.)
Assertion
Ref Expression
cats1un ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩) = (𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩}))

Proof of Theorem cats1un
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ccatws1cl 14541 . . . . 5 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩) ∈ Word 𝑋)
2 wrdf 14443 . . . . 5 ((𝐴 ++ ⟨“𝐵”⟩) ∈ Word 𝑋 → (𝐴 ++ ⟨“𝐵”⟩):(0..^(♯‘(𝐴 ++ ⟨“𝐵”⟩)))⟶𝑋)
31, 2syl 17 . . . 4 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩):(0..^(♯‘(𝐴 ++ ⟨“𝐵”⟩)))⟶𝑋)
4 ccatws1len 14545 . . . . . . . 8 (𝐴 ∈ Word 𝑋 → (♯‘(𝐴 ++ ⟨“𝐵”⟩)) = ((♯‘𝐴) + 1))
54oveq2d 7369 . . . . . . 7 (𝐴 ∈ Word 𝑋 → (0..^(♯‘(𝐴 ++ ⟨“𝐵”⟩))) = (0..^((♯‘𝐴) + 1)))
6 lencl 14458 . . . . . . . . 9 (𝐴 ∈ Word 𝑋 → (♯‘𝐴) ∈ ℕ0)
7 nn0uz 12795 . . . . . . . . 9 0 = (ℤ‘0)
86, 7eleqtrdi 2838 . . . . . . . 8 (𝐴 ∈ Word 𝑋 → (♯‘𝐴) ∈ (ℤ‘0))
9 fzosplitsn 13696 . . . . . . . 8 ((♯‘𝐴) ∈ (ℤ‘0) → (0..^((♯‘𝐴) + 1)) = ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
108, 9syl 17 . . . . . . 7 (𝐴 ∈ Word 𝑋 → (0..^((♯‘𝐴) + 1)) = ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
115, 10eqtrd 2764 . . . . . 6 (𝐴 ∈ Word 𝑋 → (0..^(♯‘(𝐴 ++ ⟨“𝐵”⟩))) = ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
1211adantr 480 . . . . 5 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (0..^(♯‘(𝐴 ++ ⟨“𝐵”⟩))) = ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
1312feq2d 6640 . . . 4 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((𝐴 ++ ⟨“𝐵”⟩):(0..^(♯‘(𝐴 ++ ⟨“𝐵”⟩)))⟶𝑋 ↔ (𝐴 ++ ⟨“𝐵”⟩):((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})⟶𝑋))
143, 13mpbid 232 . . 3 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩):((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})⟶𝑋)
1514ffnd 6657 . 2 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩) Fn ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
16 wrdf 14443 . . . . 5 (𝐴 ∈ Word 𝑋𝐴:(0..^(♯‘𝐴))⟶𝑋)
1716adantr 480 . . . 4 ((𝐴 ∈ Word 𝑋𝐵𝑋) → 𝐴:(0..^(♯‘𝐴))⟶𝑋)
18 eqid 2729 . . . . . 6 {⟨(♯‘𝐴), 𝐵⟩} = {⟨(♯‘𝐴), 𝐵⟩}
19 fsng 7075 . . . . . 6 (((♯‘𝐴) ∈ ℕ0𝐵𝑋) → ({⟨(♯‘𝐴), 𝐵⟩}:{(♯‘𝐴)}⟶{𝐵} ↔ {⟨(♯‘𝐴), 𝐵⟩} = {⟨(♯‘𝐴), 𝐵⟩}))
2018, 19mpbiri 258 . . . . 5 (((♯‘𝐴) ∈ ℕ0𝐵𝑋) → {⟨(♯‘𝐴), 𝐵⟩}:{(♯‘𝐴)}⟶{𝐵})
216, 20sylan 580 . . . 4 ((𝐴 ∈ Word 𝑋𝐵𝑋) → {⟨(♯‘𝐴), 𝐵⟩}:{(♯‘𝐴)}⟶{𝐵})
22 fzodisjsn 13618 . . . . 5 ((0..^(♯‘𝐴)) ∩ {(♯‘𝐴)}) = ∅
2322a1i 11 . . . 4 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((0..^(♯‘𝐴)) ∩ {(♯‘𝐴)}) = ∅)
24 fun 6690 . . . 4 (((𝐴:(0..^(♯‘𝐴))⟶𝑋 ∧ {⟨(♯‘𝐴), 𝐵⟩}:{(♯‘𝐴)}⟶{𝐵}) ∧ ((0..^(♯‘𝐴)) ∩ {(♯‘𝐴)}) = ∅) → (𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩}):((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})⟶(𝑋 ∪ {𝐵}))
2517, 21, 23, 24syl21anc 837 . . 3 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩}):((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})⟶(𝑋 ∪ {𝐵}))
2625ffnd 6657 . 2 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩}) Fn ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
27 elun 4106 . . 3 (𝑥 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}) ↔ (𝑥 ∈ (0..^(♯‘𝐴)) ∨ 𝑥 ∈ {(♯‘𝐴)}))
28 ccats1val1 14551 . . . . . 6 ((𝐴 ∈ Word 𝑋𝑥 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = (𝐴𝑥))
2928adantlr 715 . . . . 5 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = (𝐴𝑥))
30 simpr 484 . . . . . . . 8 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ (0..^(♯‘𝐴))) → 𝑥 ∈ (0..^(♯‘𝐴)))
31 fzonel 13594 . . . . . . . 8 ¬ (♯‘𝐴) ∈ (0..^(♯‘𝐴))
32 nelne2 3023 . . . . . . . 8 ((𝑥 ∈ (0..^(♯‘𝐴)) ∧ ¬ (♯‘𝐴) ∈ (0..^(♯‘𝐴))) → 𝑥 ≠ (♯‘𝐴))
3330, 31, 32sylancl 586 . . . . . . 7 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ (0..^(♯‘𝐴))) → 𝑥 ≠ (♯‘𝐴))
3433necomd 2980 . . . . . 6 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ (0..^(♯‘𝐴))) → (♯‘𝐴) ≠ 𝑥)
35 fvunsn 7119 . . . . . 6 ((♯‘𝐴) ≠ 𝑥 → ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘𝑥) = (𝐴𝑥))
3634, 35syl 17 . . . . 5 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ (0..^(♯‘𝐴))) → ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘𝑥) = (𝐴𝑥))
3729, 36eqtr4d 2767 . . . 4 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘𝑥))
38 fvexd 6841 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (♯‘𝐴) ∈ V)
39 simpr 484 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵𝑋) → 𝐵𝑋)
4017fdmd 6666 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑋𝐵𝑋) → dom 𝐴 = (0..^(♯‘𝐴)))
4140eleq2d 2814 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((♯‘𝐴) ∈ dom 𝐴 ↔ (♯‘𝐴) ∈ (0..^(♯‘𝐴))))
4231, 41mtbiri 327 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ¬ (♯‘𝐴) ∈ dom 𝐴)
43 fsnunfv 7127 . . . . . . . 8 (((♯‘𝐴) ∈ V ∧ 𝐵𝑋 ∧ ¬ (♯‘𝐴) ∈ dom 𝐴) → ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘(♯‘𝐴)) = 𝐵)
4438, 39, 42, 43syl3anc 1373 . . . . . . 7 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘(♯‘𝐴)) = 𝐵)
45 simpl 482 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋𝐵𝑋) → 𝐴 ∈ Word 𝑋)
46 s1cl 14527 . . . . . . . . . 10 (𝐵𝑋 → ⟨“𝐵”⟩ ∈ Word 𝑋)
4746adantl 481 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ⟨“𝐵”⟩ ∈ Word 𝑋)
48 s1len 14531 . . . . . . . . . . . 12 (♯‘⟨“𝐵”⟩) = 1
49 1nn 12157 . . . . . . . . . . . 12 1 ∈ ℕ
5048, 49eqeltri 2824 . . . . . . . . . . 11 (♯‘⟨“𝐵”⟩) ∈ ℕ
51 lbfzo0 13620 . . . . . . . . . . 11 (0 ∈ (0..^(♯‘⟨“𝐵”⟩)) ↔ (♯‘⟨“𝐵”⟩) ∈ ℕ)
5250, 51mpbir 231 . . . . . . . . . 10 0 ∈ (0..^(♯‘⟨“𝐵”⟩))
5352a1i 11 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋𝐵𝑋) → 0 ∈ (0..^(♯‘⟨“𝐵”⟩)))
54 ccatval3 14504 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋 ∧ ⟨“𝐵”⟩ ∈ Word 𝑋 ∧ 0 ∈ (0..^(♯‘⟨“𝐵”⟩))) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (♯‘𝐴))) = (⟨“𝐵”⟩‘0))
5545, 47, 53, 54syl3anc 1373 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (♯‘𝐴))) = (⟨“𝐵”⟩‘0))
56 s1fv 14535 . . . . . . . . 9 (𝐵𝑋 → (⟨“𝐵”⟩‘0) = 𝐵)
5756adantl 481 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (⟨“𝐵”⟩‘0) = 𝐵)
5855, 57eqtrd 2764 . . . . . . 7 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (♯‘𝐴))) = 𝐵)
596adantr 480 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (♯‘𝐴) ∈ ℕ0)
6059nn0cnd 12465 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (♯‘𝐴) ∈ ℂ)
6160addlidd 11335 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (0 + (♯‘𝐴)) = (♯‘𝐴))
6261fveq2d 6830 . . . . . . 7 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (♯‘𝐴))) = ((𝐴 ++ ⟨“𝐵”⟩)‘(♯‘𝐴)))
6344, 58, 623eqtr2rd 2771 . . . . . 6 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((𝐴 ++ ⟨“𝐵”⟩)‘(♯‘𝐴)) = ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘(♯‘𝐴)))
64 elsni 4596 . . . . . . . 8 (𝑥 ∈ {(♯‘𝐴)} → 𝑥 = (♯‘𝐴))
6564fveq2d 6830 . . . . . . 7 (𝑥 ∈ {(♯‘𝐴)} → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ++ ⟨“𝐵”⟩)‘(♯‘𝐴)))
6664fveq2d 6830 . . . . . . 7 (𝑥 ∈ {(♯‘𝐴)} → ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘𝑥) = ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘(♯‘𝐴)))
6765, 66eqeq12d 2745 . . . . . 6 (𝑥 ∈ {(♯‘𝐴)} → (((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘𝑥) ↔ ((𝐴 ++ ⟨“𝐵”⟩)‘(♯‘𝐴)) = ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘(♯‘𝐴))))
6863, 67syl5ibrcom 247 . . . . 5 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝑥 ∈ {(♯‘𝐴)} → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘𝑥)))
6968imp 406 . . . 4 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ {(♯‘𝐴)}) → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘𝑥))
7037, 69jaodan 959 . . 3 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ (𝑥 ∈ (0..^(♯‘𝐴)) ∨ 𝑥 ∈ {(♯‘𝐴)})) → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘𝑥))
7127, 70sylan2b 594 . 2 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})) → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩})‘𝑥))
7215, 26, 71eqfnfvd 6972 1 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩) = (𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  Vcvv 3438  cun 3903  cin 3904  c0 4286  {csn 4579  cop 4585  dom cdm 5623  wf 6482  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029   + caddc 11031  cn 12146  0cn0 12402  cuz 12753  ..^cfzo 13575  chash 14255  Word cword 14438   ++ cconcat 14495  ⟨“cs1 14520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-concat 14496  df-s1 14521
This theorem is referenced by:  s2prop  14832  s3tpop  14834  s4prop  14835  pgpfaclem1  19980  vdegp1ai  29500  vdegp1bi  29501  wwlksnext  29856
  Copyright terms: Public domain W3C validator