MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnnfpeq0 Structured version   Visualization version   GIF version

Theorem fnnfpeq0 7152
Description: A function is the identity iff it moves no points. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Assertion
Ref Expression
fnnfpeq0 (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴)))

Proof of Theorem fnnfpeq0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rabeq0 4351 . . 3 ({𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥} = ∅ ↔ ∀𝑥𝐴 ¬ (𝐹𝑥) ≠ 𝑥)
2 nne 2929 . . . . 5 (¬ (𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑥) = 𝑥)
3 fvresi 7147 . . . . . . 7 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
43eqeq2d 2740 . . . . . 6 (𝑥𝐴 → ((𝐹𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹𝑥) = 𝑥))
54adantl 481 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹𝑥) = 𝑥))
62, 5bitr4id 290 . . . 4 ((𝐹 Fn 𝐴𝑥𝐴) → (¬ (𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
76ralbidva 3154 . . 3 (𝐹 Fn 𝐴 → (∀𝑥𝐴 ¬ (𝐹𝑥) ≠ 𝑥 ↔ ∀𝑥𝐴 (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
81, 7bitrid 283 . 2 (𝐹 Fn 𝐴 → ({𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥} = ∅ ↔ ∀𝑥𝐴 (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
9 fndifnfp 7150 . . 3 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
109eqeq1d 2731 . 2 (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥} = ∅))
11 fnresi 6647 . . 3 ( I ↾ 𝐴) Fn 𝐴
12 eqfnfv 7003 . . 3 ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑥𝐴 (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
1311, 12mpan2 691 . 2 (𝐹 Fn 𝐴 → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑥𝐴 (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
148, 10, 133bitr4d 311 1 (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  cdif 3911  c0 4296   I cid 5532  dom cdm 5638  cres 5640   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519
This theorem is referenced by:  symggen  19400  m1detdiag  22484  mdetdiaglem  22485
  Copyright terms: Public domain W3C validator