MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnnfpeq0 Structured version   Visualization version   GIF version

Theorem fnnfpeq0 7112
Description: A function is the identity iff it moves no points. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Assertion
Ref Expression
fnnfpeq0 (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴)))

Proof of Theorem fnnfpeq0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rabeq0 4335 . . 3 ({𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥} = ∅ ↔ ∀𝑥𝐴 ¬ (𝐹𝑥) ≠ 𝑥)
2 nne 2932 . . . . 5 (¬ (𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑥) = 𝑥)
3 fvresi 7107 . . . . . . 7 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
43eqeq2d 2742 . . . . . 6 (𝑥𝐴 → ((𝐹𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹𝑥) = 𝑥))
54adantl 481 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹𝑥) = 𝑥))
62, 5bitr4id 290 . . . 4 ((𝐹 Fn 𝐴𝑥𝐴) → (¬ (𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
76ralbidva 3153 . . 3 (𝐹 Fn 𝐴 → (∀𝑥𝐴 ¬ (𝐹𝑥) ≠ 𝑥 ↔ ∀𝑥𝐴 (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
81, 7bitrid 283 . 2 (𝐹 Fn 𝐴 → ({𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥} = ∅ ↔ ∀𝑥𝐴 (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
9 fndifnfp 7110 . . 3 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
109eqeq1d 2733 . 2 (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥} = ∅))
11 fnresi 6610 . . 3 ( I ↾ 𝐴) Fn 𝐴
12 eqfnfv 6964 . . 3 ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑥𝐴 (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
1311, 12mpan2 691 . 2 (𝐹 Fn 𝐴 → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑥𝐴 (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
148, 10, 133bitr4d 311 1 (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  cdif 3894  c0 4280   I cid 5508  dom cdm 5614  cres 5616   Fn wfn 6476  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489
This theorem is referenced by:  symggen  19382  m1detdiag  22512  mdetdiaglem  22513
  Copyright terms: Public domain W3C validator