| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnnfpeq0 | Structured version Visualization version GIF version | ||
| Description: A function is the identity iff it moves no points. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnnfpeq0 | ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq0 4368 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) ≠ 𝑥) | |
| 2 | nne 2935 | . . . . 5 ⊢ (¬ (𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) = 𝑥) | |
| 3 | fvresi 7175 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
| 4 | 3 | eqeq2d 2745 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘𝑥) = 𝑥)) |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘𝑥) = 𝑥)) |
| 6 | 2, 5 | bitr4id 290 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (¬ (𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
| 7 | 6 | ralbidva 3163 | . . 3 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) ≠ 𝑥 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
| 8 | 1, 7 | bitrid 283 | . 2 ⊢ (𝐹 Fn 𝐴 → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} = ∅ ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
| 9 | fndifnfp 7178 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) | |
| 10 | 9 | eqeq1d 2736 | . 2 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} = ∅)) |
| 11 | fnresi 6677 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
| 12 | eqfnfv 7031 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) | |
| 13 | 11, 12 | mpan2 691 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
| 14 | 8, 10, 13 | 3bitr4d 311 | 1 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 {crab 3419 ∖ cdif 3928 ∅c0 4313 I cid 5557 dom cdm 5665 ↾ cres 5667 Fn wfn 6536 ‘cfv 6541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 |
| This theorem is referenced by: symggen 19457 m1detdiag 22552 mdetdiaglem 22553 |
| Copyright terms: Public domain | W3C validator |