| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnnfpeq0 | Structured version Visualization version GIF version | ||
| Description: A function is the identity iff it moves no points. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnnfpeq0 | ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq0 4388 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) ≠ 𝑥) | |
| 2 | nne 2944 | . . . . 5 ⊢ (¬ (𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) = 𝑥) | |
| 3 | fvresi 7193 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
| 4 | 3 | eqeq2d 2748 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘𝑥) = 𝑥)) |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘𝑥) = 𝑥)) |
| 6 | 2, 5 | bitr4id 290 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (¬ (𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
| 7 | 6 | ralbidva 3176 | . . 3 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) ≠ 𝑥 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
| 8 | 1, 7 | bitrid 283 | . 2 ⊢ (𝐹 Fn 𝐴 → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} = ∅ ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
| 9 | fndifnfp 7196 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) | |
| 10 | 9 | eqeq1d 2739 | . 2 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} = ∅)) |
| 11 | fnresi 6697 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
| 12 | eqfnfv 7051 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) | |
| 13 | 11, 12 | mpan2 691 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
| 14 | 8, 10, 13 | 3bitr4d 311 | 1 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 {crab 3436 ∖ cdif 3948 ∅c0 4333 I cid 5577 dom cdm 5685 ↾ cres 5687 Fn wfn 6556 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 |
| This theorem is referenced by: symggen 19488 m1detdiag 22603 mdetdiaglem 22604 |
| Copyright terms: Public domain | W3C validator |