MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnnfpeq0 Structured version   Visualization version   GIF version

Theorem fnnfpeq0 7198
Description: A function is the identity iff it moves no points. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Assertion
Ref Expression
fnnfpeq0 (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴)))

Proof of Theorem fnnfpeq0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rabeq0 4388 . . 3 ({𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥} = ∅ ↔ ∀𝑥𝐴 ¬ (𝐹𝑥) ≠ 𝑥)
2 nne 2944 . . . . 5 (¬ (𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑥) = 𝑥)
3 fvresi 7193 . . . . . . 7 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
43eqeq2d 2748 . . . . . 6 (𝑥𝐴 → ((𝐹𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹𝑥) = 𝑥))
54adantl 481 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹𝑥) = 𝑥))
62, 5bitr4id 290 . . . 4 ((𝐹 Fn 𝐴𝑥𝐴) → (¬ (𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
76ralbidva 3176 . . 3 (𝐹 Fn 𝐴 → (∀𝑥𝐴 ¬ (𝐹𝑥) ≠ 𝑥 ↔ ∀𝑥𝐴 (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
81, 7bitrid 283 . 2 (𝐹 Fn 𝐴 → ({𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥} = ∅ ↔ ∀𝑥𝐴 (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
9 fndifnfp 7196 . . 3 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
109eqeq1d 2739 . 2 (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥} = ∅))
11 fnresi 6697 . . 3 ( I ↾ 𝐴) Fn 𝐴
12 eqfnfv 7051 . . 3 ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑥𝐴 (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
1311, 12mpan2 691 . 2 (𝐹 Fn 𝐴 → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑥𝐴 (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
148, 10, 133bitr4d 311 1 (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  {crab 3436  cdif 3948  c0 4333   I cid 5577  dom cdm 5685  cres 5687   Fn wfn 6556  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569
This theorem is referenced by:  symggen  19488  m1detdiag  22603  mdetdiaglem  22604
  Copyright terms: Public domain W3C validator