MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnnfpeq0 Structured version   Visualization version   GIF version

Theorem fnnfpeq0 7212
Description: A function is the identity iff it moves no points. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Assertion
Ref Expression
fnnfpeq0 (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴)))

Proof of Theorem fnnfpeq0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rabeq0 4411 . . 3 ({𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥} = ∅ ↔ ∀𝑥𝐴 ¬ (𝐹𝑥) ≠ 𝑥)
2 nne 2950 . . . . 5 (¬ (𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑥) = 𝑥)
3 fvresi 7207 . . . . . . 7 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
43eqeq2d 2751 . . . . . 6 (𝑥𝐴 → ((𝐹𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹𝑥) = 𝑥))
54adantl 481 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹𝑥) = 𝑥))
62, 5bitr4id 290 . . . 4 ((𝐹 Fn 𝐴𝑥𝐴) → (¬ (𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
76ralbidva 3182 . . 3 (𝐹 Fn 𝐴 → (∀𝑥𝐴 ¬ (𝐹𝑥) ≠ 𝑥 ↔ ∀𝑥𝐴 (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
81, 7bitrid 283 . 2 (𝐹 Fn 𝐴 → ({𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥} = ∅ ↔ ∀𝑥𝐴 (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
9 fndifnfp 7210 . . 3 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
109eqeq1d 2742 . 2 (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥} = ∅))
11 fnresi 6709 . . 3 ( I ↾ 𝐴) Fn 𝐴
12 eqfnfv 7064 . . 3 ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑥𝐴 (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
1311, 12mpan2 690 . 2 (𝐹 Fn 𝐴 → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑥𝐴 (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)))
148, 10, 133bitr4d 311 1 (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  cdif 3973  c0 4352   I cid 5592  dom cdm 5700  cres 5702   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581
This theorem is referenced by:  symggen  19512  m1detdiag  22624  mdetdiaglem  22625
  Copyright terms: Public domain W3C validator