![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnnfpeq0 | Structured version Visualization version GIF version |
Description: A function is the identity iff it moves no points. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
Ref | Expression |
---|---|
fnnfpeq0 | ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq0 4158 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) ≠ 𝑥) | |
2 | fvresi 6669 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
3 | 2 | eqeq2d 2810 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘𝑥) = 𝑥)) |
4 | 3 | adantl 474 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘𝑥) = 𝑥)) |
5 | nne 2976 | . . . . 5 ⊢ (¬ (𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) = 𝑥) | |
6 | 4, 5 | syl6rbbr 282 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (¬ (𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
7 | 6 | ralbidva 3167 | . . 3 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) ≠ 𝑥 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
8 | 1, 7 | syl5bb 275 | . 2 ⊢ (𝐹 Fn 𝐴 → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} = ∅ ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
9 | fndifnfp 6672 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) | |
10 | 9 | eqeq1d 2802 | . 2 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} = ∅)) |
11 | fnresi 6220 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
12 | eqfnfv 6538 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) | |
13 | 11, 12 | mpan2 683 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
14 | 8, 10, 13 | 3bitr4d 303 | 1 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2972 ∀wral 3090 {crab 3094 ∖ cdif 3767 ∅c0 4116 I cid 5220 dom cdm 5313 ↾ cres 5315 Fn wfn 6097 ‘cfv 6102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-fv 6110 |
This theorem is referenced by: symggen 18201 m1detdiag 20728 mdetdiaglem 20729 |
Copyright terms: Public domain | W3C validator |