Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnnfpeq0 | Structured version Visualization version GIF version |
Description: A function is the identity iff it moves no points. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
Ref | Expression |
---|---|
fnnfpeq0 | ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq0 4274 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) ≠ 𝑥) | |
2 | nne 2938 | . . . . 5 ⊢ (¬ (𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) = 𝑥) | |
3 | fvresi 6946 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
4 | 3 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘𝑥) = 𝑥)) |
5 | 4 | adantl 485 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘𝑥) = 𝑥)) |
6 | 2, 5 | bitr4id 293 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (¬ (𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
7 | 6 | ralbidva 3108 | . . 3 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) ≠ 𝑥 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
8 | 1, 7 | syl5bb 286 | . 2 ⊢ (𝐹 Fn 𝐴 → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} = ∅ ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
9 | fndifnfp 6949 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) | |
10 | 9 | eqeq1d 2740 | . 2 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} = ∅)) |
11 | fnresi 6466 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
12 | eqfnfv 6810 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) | |
13 | 11, 12 | mpan2 691 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
14 | 8, 10, 13 | 3bitr4d 314 | 1 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ≠ wne 2934 ∀wral 3053 {crab 3057 ∖ cdif 3841 ∅c0 4212 I cid 5429 dom cdm 5526 ↾ cres 5528 Fn wfn 6335 ‘cfv 6340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5168 ax-nul 5175 ax-pr 5297 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3683 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-fv 6348 |
This theorem is referenced by: symggen 18717 m1detdiag 21349 mdetdiaglem 21350 |
Copyright terms: Public domain | W3C validator |