![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnnfpeq0 | Structured version Visualization version GIF version |
Description: A function is the identity iff it moves no points. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
Ref | Expression |
---|---|
fnnfpeq0 | ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq0 4385 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) ≠ 𝑥) | |
2 | nne 2945 | . . . . 5 ⊢ (¬ (𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) = 𝑥) | |
3 | fvresi 7171 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
4 | 3 | eqeq2d 2744 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘𝑥) = 𝑥)) |
5 | 4 | adantl 483 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘𝑥) = 𝑥)) |
6 | 2, 5 | bitr4id 290 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (¬ (𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
7 | 6 | ralbidva 3176 | . . 3 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) ≠ 𝑥 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
8 | 1, 7 | bitrid 283 | . 2 ⊢ (𝐹 Fn 𝐴 → ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} = ∅ ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
9 | fndifnfp 7174 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) | |
10 | 9 | eqeq1d 2735 | . 2 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥} = ∅)) |
11 | fnresi 6680 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
12 | eqfnfv 7033 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) | |
13 | 11, 12 | mpan2 690 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥))) |
14 | 8, 10, 13 | 3bitr4d 311 | 1 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 {crab 3433 ∖ cdif 3946 ∅c0 4323 I cid 5574 dom cdm 5677 ↾ cres 5679 Fn wfn 6539 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 |
This theorem is referenced by: symggen 19338 m1detdiag 22099 mdetdiaglem 22100 |
Copyright terms: Public domain | W3C validator |