Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpasscan2d Structured version   Visualization version   GIF version

Theorem grpasscan2d 42539
Description: An associative cancellation law for groups. (Contributed by SN, 29-Jan-2025.)
Hypotheses
Ref Expression
grpasscan2d.b 𝐵 = (Base‘𝐺)
grpasscan2d.p + = (+g𝐺)
grpasscan2d.n 𝑁 = (invg𝐺)
grpasscan2d.g (𝜑𝐺 ∈ Grp)
grpasscan2d.1 (𝜑𝑋𝐵)
grpasscan2d.2 (𝜑𝑌𝐵)
Assertion
Ref Expression
grpasscan2d (𝜑 → ((𝑋 + (𝑁𝑌)) + 𝑌) = 𝑋)

Proof of Theorem grpasscan2d
StepHypRef Expression
1 grpasscan2d.g . 2 (𝜑𝐺 ∈ Grp)
2 grpasscan2d.1 . 2 (𝜑𝑋𝐵)
3 grpasscan2d.2 . 2 (𝜑𝑌𝐵)
4 grpasscan2d.b . . 3 𝐵 = (Base‘𝐺)
5 grpasscan2d.p . . 3 + = (+g𝐺)
6 grpasscan2d.n . . 3 𝑁 = (invg𝐺)
74, 5, 6grpasscan2 18912 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑁𝑌)) + 𝑌) = 𝑋)
81, 2, 3, 7syl3anc 1373 1 (𝜑 → ((𝑋 + (𝑁𝑌)) + 𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  Grpcgrp 18843  invgcminusg 18844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-minusg 18847
This theorem is referenced by:  grpcominv1  42540
  Copyright terms: Public domain W3C validator