Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpasscan2d Structured version   Visualization version   GIF version

Theorem grpasscan2d 42502
Description: An associative cancellation law for groups. (Contributed by SN, 29-Jan-2025.)
Hypotheses
Ref Expression
grpasscan2d.b 𝐵 = (Base‘𝐺)
grpasscan2d.p + = (+g𝐺)
grpasscan2d.n 𝑁 = (invg𝐺)
grpasscan2d.g (𝜑𝐺 ∈ Grp)
grpasscan2d.1 (𝜑𝑋𝐵)
grpasscan2d.2 (𝜑𝑌𝐵)
Assertion
Ref Expression
grpasscan2d (𝜑 → ((𝑋 + (𝑁𝑌)) + 𝑌) = 𝑋)

Proof of Theorem grpasscan2d
StepHypRef Expression
1 grpasscan2d.g . 2 (𝜑𝐺 ∈ Grp)
2 grpasscan2d.1 . 2 (𝜑𝑋𝐵)
3 grpasscan2d.2 . 2 (𝜑𝑌𝐵)
4 grpasscan2d.b . . 3 𝐵 = (Base‘𝐺)
5 grpasscan2d.p . . 3 + = (+g𝐺)
6 grpasscan2d.n . . 3 𝑁 = (invg𝐺)
74, 5, 6grpasscan2 18941 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑁𝑌)) + 𝑌) = 𝑋)
81, 2, 3, 7syl3anc 1373 1 (𝜑 → ((𝑋 + (𝑁𝑌)) + 𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Grpcgrp 18872  invgcminusg 18873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-riota 7347  df-ov 7393  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876
This theorem is referenced by:  grpcominv1  42503
  Copyright terms: Public domain W3C validator