Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpasscan2d Structured version   Visualization version   GIF version

Theorem grpasscan2d 42497
Description: An associative cancellation law for groups. (Contributed by SN, 29-Jan-2025.)
Hypotheses
Ref Expression
grpasscan2d.b 𝐵 = (Base‘𝐺)
grpasscan2d.p + = (+g𝐺)
grpasscan2d.n 𝑁 = (invg𝐺)
grpasscan2d.g (𝜑𝐺 ∈ Grp)
grpasscan2d.1 (𝜑𝑋𝐵)
grpasscan2d.2 (𝜑𝑌𝐵)
Assertion
Ref Expression
grpasscan2d (𝜑 → ((𝑋 + (𝑁𝑌)) + 𝑌) = 𝑋)

Proof of Theorem grpasscan2d
StepHypRef Expression
1 grpasscan2d.g . 2 (𝜑𝐺 ∈ Grp)
2 grpasscan2d.1 . 2 (𝜑𝑋𝐵)
3 grpasscan2d.2 . 2 (𝜑𝑌𝐵)
4 grpasscan2d.b . . 3 𝐵 = (Base‘𝐺)
5 grpasscan2d.p . . 3 + = (+g𝐺)
6 grpasscan2d.n . . 3 𝑁 = (invg𝐺)
74, 5, 6grpasscan2 18990 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑁𝑌)) + 𝑌) = 𝑋)
81, 2, 3, 7syl3anc 1373 1 (𝜑 → ((𝑋 + (𝑁𝑌)) + 𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  Grpcgrp 18921  invgcminusg 18922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-riota 7367  df-ov 7413  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925
This theorem is referenced by:  grpcominv1  42498
  Copyright terms: Public domain W3C validator