Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frlmvscadiccat Structured version   Visualization version   GIF version

Theorem frlmvscadiccat 39737
Description: Scalar multiplication distributes over concatenation. (Contributed by SN, 6-Sep-2023.)
Hypotheses
Ref Expression
frlmfzoccat.w 𝑊 = (𝐾 freeLMod (0..^𝐿))
frlmfzoccat.x 𝑋 = (𝐾 freeLMod (0..^𝑀))
frlmfzoccat.y 𝑌 = (𝐾 freeLMod (0..^𝑁))
frlmfzoccat.b 𝐵 = (Base‘𝑊)
frlmfzoccat.c 𝐶 = (Base‘𝑋)
frlmfzoccat.d 𝐷 = (Base‘𝑌)
frlmfzoccat.k (𝜑𝐾𝑍)
frlmfzoccat.l (𝜑 → (𝑀 + 𝑁) = 𝐿)
frlmfzoccat.m (𝜑𝑀 ∈ ℕ0)
frlmfzoccat.n (𝜑𝑁 ∈ ℕ0)
frlmfzoccat.u (𝜑𝑈𝐶)
frlmfzoccat.v (𝜑𝑉𝐷)
frlmvscadiccat.o 𝑂 = ( ·𝑠𝑊)
frlmvscadiccat.p = ( ·𝑠𝑋)
frlmvscadiccat.q · = ( ·𝑠𝑌)
frlmvscadiccat.s 𝑆 = (Base‘𝐾)
frlmvscadiccat.a (𝜑𝐴𝑆)
Assertion
Ref Expression
frlmvscadiccat (𝜑 → (𝐴𝑂(𝑈 ++ 𝑉)) = ((𝐴 𝑈) ++ (𝐴 · 𝑉)))

Proof of Theorem frlmvscadiccat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 frlmvscadiccat.a . . . . . . 7 (𝜑𝐴𝑆)
2 fconstg 6552 . . . . . . 7 (𝐴𝑆 → ((0..^𝐿) × {𝐴}):(0..^𝐿)⟶{𝐴})
31, 2syl 17 . . . . . 6 (𝜑 → ((0..^𝐿) × {𝐴}):(0..^𝐿)⟶{𝐴})
43ffnd 6500 . . . . 5 (𝜑 → ((0..^𝐿) × {𝐴}) Fn (0..^𝐿))
5 fconstg 6552 . . . . . . . 8 (𝐴𝑆 → ((0..^𝑀) × {𝐴}):(0..^𝑀)⟶{𝐴})
6 iswrdi 13910 . . . . . . . 8 (((0..^𝑀) × {𝐴}):(0..^𝑀)⟶{𝐴} → ((0..^𝑀) × {𝐴}) ∈ Word {𝐴})
71, 5, 63syl 18 . . . . . . 7 (𝜑 → ((0..^𝑀) × {𝐴}) ∈ Word {𝐴})
8 fconstg 6552 . . . . . . . 8 (𝐴𝑆 → ((0..^𝑁) × {𝐴}):(0..^𝑁)⟶{𝐴})
9 iswrdi 13910 . . . . . . . 8 (((0..^𝑁) × {𝐴}):(0..^𝑁)⟶{𝐴} → ((0..^𝑁) × {𝐴}) ∈ Word {𝐴})
101, 8, 93syl 18 . . . . . . 7 (𝜑 → ((0..^𝑁) × {𝐴}) ∈ Word {𝐴})
11 ccatvalfn 13975 . . . . . . 7 ((((0..^𝑀) × {𝐴}) ∈ Word {𝐴} ∧ ((0..^𝑁) × {𝐴}) ∈ Word {𝐴}) → (((0..^𝑀) × {𝐴}) ++ ((0..^𝑁) × {𝐴})) Fn (0..^((♯‘((0..^𝑀) × {𝐴})) + (♯‘((0..^𝑁) × {𝐴})))))
127, 10, 11syl2anc 588 . . . . . 6 (𝜑 → (((0..^𝑀) × {𝐴}) ++ ((0..^𝑁) × {𝐴})) Fn (0..^((♯‘((0..^𝑀) × {𝐴})) + (♯‘((0..^𝑁) × {𝐴})))))
13 fzofi 13384 . . . . . . . . . . . 12 (0..^𝑀) ∈ Fin
14 snfi 8615 . . . . . . . . . . . 12 {𝐴} ∈ Fin
15 hashxp 13838 . . . . . . . . . . . 12 (((0..^𝑀) ∈ Fin ∧ {𝐴} ∈ Fin) → (♯‘((0..^𝑀) × {𝐴})) = ((♯‘(0..^𝑀)) · (♯‘{𝐴})))
1613, 14, 15mp2an 692 . . . . . . . . . . 11 (♯‘((0..^𝑀) × {𝐴})) = ((♯‘(0..^𝑀)) · (♯‘{𝐴}))
17 hashsng 13773 . . . . . . . . . . . . . 14 (𝐴𝑆 → (♯‘{𝐴}) = 1)
181, 17syl 17 . . . . . . . . . . . . 13 (𝜑 → (♯‘{𝐴}) = 1)
1918oveq2d 7167 . . . . . . . . . . . 12 (𝜑 → ((♯‘(0..^𝑀)) · (♯‘{𝐴})) = ((♯‘(0..^𝑀)) · 1))
20 hashcl 13760 . . . . . . . . . . . . . . 15 ((0..^𝑀) ∈ Fin → (♯‘(0..^𝑀)) ∈ ℕ0)
2113, 20mp1i 13 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(0..^𝑀)) ∈ ℕ0)
2221nn0cnd 11989 . . . . . . . . . . . . 13 (𝜑 → (♯‘(0..^𝑀)) ∈ ℂ)
2322mulid1d 10689 . . . . . . . . . . . 12 (𝜑 → ((♯‘(0..^𝑀)) · 1) = (♯‘(0..^𝑀)))
24 frlmfzoccat.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ0)
25 hashfzo0 13834 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (♯‘(0..^𝑀)) = 𝑀)
2624, 25syl 17 . . . . . . . . . . . 12 (𝜑 → (♯‘(0..^𝑀)) = 𝑀)
2719, 23, 263eqtrd 2798 . . . . . . . . . . 11 (𝜑 → ((♯‘(0..^𝑀)) · (♯‘{𝐴})) = 𝑀)
2816, 27syl5eq 2806 . . . . . . . . . 10 (𝜑 → (♯‘((0..^𝑀) × {𝐴})) = 𝑀)
29 fzofi 13384 . . . . . . . . . . . 12 (0..^𝑁) ∈ Fin
30 hashxp 13838 . . . . . . . . . . . 12 (((0..^𝑁) ∈ Fin ∧ {𝐴} ∈ Fin) → (♯‘((0..^𝑁) × {𝐴})) = ((♯‘(0..^𝑁)) · (♯‘{𝐴})))
3129, 14, 30mp2an 692 . . . . . . . . . . 11 (♯‘((0..^𝑁) × {𝐴})) = ((♯‘(0..^𝑁)) · (♯‘{𝐴}))
3218oveq2d 7167 . . . . . . . . . . . 12 (𝜑 → ((♯‘(0..^𝑁)) · (♯‘{𝐴})) = ((♯‘(0..^𝑁)) · 1))
33 hashcl 13760 . . . . . . . . . . . . . . 15 ((0..^𝑁) ∈ Fin → (♯‘(0..^𝑁)) ∈ ℕ0)
3429, 33mp1i 13 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(0..^𝑁)) ∈ ℕ0)
3534nn0cnd 11989 . . . . . . . . . . . . 13 (𝜑 → (♯‘(0..^𝑁)) ∈ ℂ)
3635mulid1d 10689 . . . . . . . . . . . 12 (𝜑 → ((♯‘(0..^𝑁)) · 1) = (♯‘(0..^𝑁)))
37 frlmfzoccat.n . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ0)
38 hashfzo0 13834 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁)
3937, 38syl 17 . . . . . . . . . . . 12 (𝜑 → (♯‘(0..^𝑁)) = 𝑁)
4032, 36, 393eqtrd 2798 . . . . . . . . . . 11 (𝜑 → ((♯‘(0..^𝑁)) · (♯‘{𝐴})) = 𝑁)
4131, 40syl5eq 2806 . . . . . . . . . 10 (𝜑 → (♯‘((0..^𝑁) × {𝐴})) = 𝑁)
4228, 41oveq12d 7169 . . . . . . . . 9 (𝜑 → ((♯‘((0..^𝑀) × {𝐴})) + (♯‘((0..^𝑁) × {𝐴}))) = (𝑀 + 𝑁))
43 frlmfzoccat.l . . . . . . . . 9 (𝜑 → (𝑀 + 𝑁) = 𝐿)
4442, 43eqtrd 2794 . . . . . . . 8 (𝜑 → ((♯‘((0..^𝑀) × {𝐴})) + (♯‘((0..^𝑁) × {𝐴}))) = 𝐿)
4544oveq2d 7167 . . . . . . 7 (𝜑 → (0..^((♯‘((0..^𝑀) × {𝐴})) + (♯‘((0..^𝑁) × {𝐴})))) = (0..^𝐿))
4645fneq2d 6429 . . . . . 6 (𝜑 → ((((0..^𝑀) × {𝐴}) ++ ((0..^𝑁) × {𝐴})) Fn (0..^((♯‘((0..^𝑀) × {𝐴})) + (♯‘((0..^𝑁) × {𝐴})))) ↔ (((0..^𝑀) × {𝐴}) ++ ((0..^𝑁) × {𝐴})) Fn (0..^𝐿)))
4712, 46mpbid 235 . . . . 5 (𝜑 → (((0..^𝑀) × {𝐴}) ++ ((0..^𝑁) × {𝐴})) Fn (0..^𝐿))
4828adantr 485 . . . . . . . . 9 ((𝜑𝑥 ∈ (0..^𝐿)) → (♯‘((0..^𝑀) × {𝐴})) = 𝑀)
4948breq2d 5045 . . . . . . . 8 ((𝜑𝑥 ∈ (0..^𝐿)) → (𝑥 < (♯‘((0..^𝑀) × {𝐴})) ↔ 𝑥 < 𝑀))
5049ifbid 4444 . . . . . . 7 ((𝜑𝑥 ∈ (0..^𝐿)) → if(𝑥 < (♯‘((0..^𝑀) × {𝐴})), (((0..^𝑀) × {𝐴})‘𝑥), (((0..^𝑁) × {𝐴})‘(𝑥 − (♯‘((0..^𝑀) × {𝐴}))))) = if(𝑥 < 𝑀, (((0..^𝑀) × {𝐴})‘𝑥), (((0..^𝑁) × {𝐴})‘(𝑥 − (♯‘((0..^𝑀) × {𝐴}))))))
511adantr 485 . . . . . . . . 9 ((𝜑𝑥 ∈ (0..^𝐿)) → 𝐴𝑆)
52 elfzouz 13084 . . . . . . . . . . 11 (𝑥 ∈ (0..^𝐿) → 𝑥 ∈ (ℤ‘0))
5352ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0..^𝐿)) ∧ 𝑥 < 𝑀) → 𝑥 ∈ (ℤ‘0))
5424ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0..^𝐿)) ∧ 𝑥 < 𝑀) → 𝑀 ∈ ℕ0)
5554nn0zd 12117 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0..^𝐿)) ∧ 𝑥 < 𝑀) → 𝑀 ∈ ℤ)
56 simpr 489 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0..^𝐿)) ∧ 𝑥 < 𝑀) → 𝑥 < 𝑀)
57 elfzo2 13083 . . . . . . . . . 10 (𝑥 ∈ (0..^𝑀) ↔ (𝑥 ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))
5853, 55, 56, 57syl3anbrc 1341 . . . . . . . . 9 (((𝜑𝑥 ∈ (0..^𝐿)) ∧ 𝑥 < 𝑀) → 𝑥 ∈ (0..^𝑀))
59 fvconst2g 6956 . . . . . . . . 9 ((𝐴𝑆𝑥 ∈ (0..^𝑀)) → (((0..^𝑀) × {𝐴})‘𝑥) = 𝐴)
6051, 58, 59syl2an2r 685 . . . . . . . 8 (((𝜑𝑥 ∈ (0..^𝐿)) ∧ 𝑥 < 𝑀) → (((0..^𝑀) × {𝐴})‘𝑥) = 𝐴)
6128ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0..^𝐿)) ∧ ¬ 𝑥 < 𝑀) → (♯‘((0..^𝑀) × {𝐴})) = 𝑀)
6261oveq2d 7167 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0..^𝐿)) ∧ ¬ 𝑥 < 𝑀) → (𝑥 − (♯‘((0..^𝑀) × {𝐴}))) = (𝑥𝑀))
6324ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (0..^𝐿)) ∧ ¬ 𝑥 < 𝑀) → 𝑀 ∈ ℕ0)
64 elfzonn0 13124 . . . . . . . . . . . . . 14 (𝑥 ∈ (0..^𝐿) → 𝑥 ∈ ℕ0)
6564ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (0..^𝐿)) ∧ ¬ 𝑥 < 𝑀) → 𝑥 ∈ ℕ0)
6624adantr 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (0..^𝐿)) → 𝑀 ∈ ℕ0)
6766nn0red 11988 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (0..^𝐿)) → 𝑀 ∈ ℝ)
68 elfzoelz 13080 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (0..^𝐿) → 𝑥 ∈ ℤ)
6968adantl 486 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (0..^𝐿)) → 𝑥 ∈ ℤ)
7069zred 12119 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (0..^𝐿)) → 𝑥 ∈ ℝ)
7167, 70lenltd 10817 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0..^𝐿)) → (𝑀𝑥 ↔ ¬ 𝑥 < 𝑀))
7271biimpar 482 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (0..^𝐿)) ∧ ¬ 𝑥 < 𝑀) → 𝑀𝑥)
73 nn0sub2 12075 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑥 ∈ ℕ0𝑀𝑥) → (𝑥𝑀) ∈ ℕ0)
7463, 65, 72, 73syl3anc 1369 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (0..^𝐿)) ∧ ¬ 𝑥 < 𝑀) → (𝑥𝑀) ∈ ℕ0)
75 elnn0uz 12316 . . . . . . . . . . . 12 ((𝑥𝑀) ∈ ℕ0 ↔ (𝑥𝑀) ∈ (ℤ‘0))
7674, 75sylib 221 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0..^𝐿)) ∧ ¬ 𝑥 < 𝑀) → (𝑥𝑀) ∈ (ℤ‘0))
7737ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (0..^𝐿)) ∧ ¬ 𝑥 < 𝑀) → 𝑁 ∈ ℕ0)
7877nn0zd 12117 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0..^𝐿)) ∧ ¬ 𝑥 < 𝑀) → 𝑁 ∈ ℤ)
79 elfzolt2 13089 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^𝐿) → 𝑥 < 𝐿)
8079adantl 486 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0..^𝐿)) → 𝑥 < 𝐿)
8167recnd 10700 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (0..^𝐿)) → 𝑀 ∈ ℂ)
8270recnd 10700 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (0..^𝐿)) → 𝑥 ∈ ℂ)
8381, 82pncan3d 11031 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0..^𝐿)) → (𝑀 + (𝑥𝑀)) = 𝑥)
8443adantr 485 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0..^𝐿)) → (𝑀 + 𝑁) = 𝐿)
8580, 83, 843brtr4d 5065 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^𝐿)) → (𝑀 + (𝑥𝑀)) < (𝑀 + 𝑁))
8670, 67resubcld 11099 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0..^𝐿)) → (𝑥𝑀) ∈ ℝ)
8737adantr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (0..^𝐿)) → 𝑁 ∈ ℕ0)
8887nn0red 11988 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0..^𝐿)) → 𝑁 ∈ ℝ)
8986, 88, 67ltadd2d 10827 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^𝐿)) → ((𝑥𝑀) < 𝑁 ↔ (𝑀 + (𝑥𝑀)) < (𝑀 + 𝑁)))
9085, 89mpbird 260 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝐿)) → (𝑥𝑀) < 𝑁)
9190adantr 485 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0..^𝐿)) ∧ ¬ 𝑥 < 𝑀) → (𝑥𝑀) < 𝑁)
92 elfzo2 13083 . . . . . . . . . . 11 ((𝑥𝑀) ∈ (0..^𝑁) ↔ ((𝑥𝑀) ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ ∧ (𝑥𝑀) < 𝑁))
9376, 78, 91, 92syl3anbrc 1341 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0..^𝐿)) ∧ ¬ 𝑥 < 𝑀) → (𝑥𝑀) ∈ (0..^𝑁))
9462, 93eqeltrd 2853 . . . . . . . . 9 (((𝜑𝑥 ∈ (0..^𝐿)) ∧ ¬ 𝑥 < 𝑀) → (𝑥 − (♯‘((0..^𝑀) × {𝐴}))) ∈ (0..^𝑁))
95 fvconst2g 6956 . . . . . . . . 9 ((𝐴𝑆 ∧ (𝑥 − (♯‘((0..^𝑀) × {𝐴}))) ∈ (0..^𝑁)) → (((0..^𝑁) × {𝐴})‘(𝑥 − (♯‘((0..^𝑀) × {𝐴})))) = 𝐴)
9651, 94, 95syl2an2r 685 . . . . . . . 8 (((𝜑𝑥 ∈ (0..^𝐿)) ∧ ¬ 𝑥 < 𝑀) → (((0..^𝑁) × {𝐴})‘(𝑥 − (♯‘((0..^𝑀) × {𝐴})))) = 𝐴)
9760, 96ifeqda 4457 . . . . . . 7 ((𝜑𝑥 ∈ (0..^𝐿)) → if(𝑥 < 𝑀, (((0..^𝑀) × {𝐴})‘𝑥), (((0..^𝑁) × {𝐴})‘(𝑥 − (♯‘((0..^𝑀) × {𝐴}))))) = 𝐴)
9850, 97eqtr2d 2795 . . . . . 6 ((𝜑𝑥 ∈ (0..^𝐿)) → 𝐴 = if(𝑥 < (♯‘((0..^𝑀) × {𝐴})), (((0..^𝑀) × {𝐴})‘𝑥), (((0..^𝑁) × {𝐴})‘(𝑥 − (♯‘((0..^𝑀) × {𝐴}))))))
99 fvconst2g 6956 . . . . . . 7 ((𝐴𝑆𝑥 ∈ (0..^𝐿)) → (((0..^𝐿) × {𝐴})‘𝑥) = 𝐴)
1001, 99sylan 584 . . . . . 6 ((𝜑𝑥 ∈ (0..^𝐿)) → (((0..^𝐿) × {𝐴})‘𝑥) = 𝐴)
10151, 5, 63syl 18 . . . . . . 7 ((𝜑𝑥 ∈ (0..^𝐿)) → ((0..^𝑀) × {𝐴}) ∈ Word {𝐴})
10251, 8, 93syl 18 . . . . . . 7 ((𝜑𝑥 ∈ (0..^𝐿)) → ((0..^𝑁) × {𝐴}) ∈ Word {𝐴})
103 ccatsymb 13976 . . . . . . 7 ((((0..^𝑀) × {𝐴}) ∈ Word {𝐴} ∧ ((0..^𝑁) × {𝐴}) ∈ Word {𝐴} ∧ 𝑥 ∈ ℤ) → ((((0..^𝑀) × {𝐴}) ++ ((0..^𝑁) × {𝐴}))‘𝑥) = if(𝑥 < (♯‘((0..^𝑀) × {𝐴})), (((0..^𝑀) × {𝐴})‘𝑥), (((0..^𝑁) × {𝐴})‘(𝑥 − (♯‘((0..^𝑀) × {𝐴}))))))
104101, 102, 69, 103syl3anc 1369 . . . . . 6 ((𝜑𝑥 ∈ (0..^𝐿)) → ((((0..^𝑀) × {𝐴}) ++ ((0..^𝑁) × {𝐴}))‘𝑥) = if(𝑥 < (♯‘((0..^𝑀) × {𝐴})), (((0..^𝑀) × {𝐴})‘𝑥), (((0..^𝑁) × {𝐴})‘(𝑥 − (♯‘((0..^𝑀) × {𝐴}))))))
10598, 100, 1043eqtr4d 2804 . . . . 5 ((𝜑𝑥 ∈ (0..^𝐿)) → (((0..^𝐿) × {𝐴})‘𝑥) = ((((0..^𝑀) × {𝐴}) ++ ((0..^𝑁) × {𝐴}))‘𝑥))
1064, 47, 105eqfnfvd 6797 . . . 4 (𝜑 → ((0..^𝐿) × {𝐴}) = (((0..^𝑀) × {𝐴}) ++ ((0..^𝑁) × {𝐴})))
107106oveq1d 7166 . . 3 (𝜑 → (((0..^𝐿) × {𝐴}) ∘f (.r𝐾)(𝑈 ++ 𝑉)) = ((((0..^𝑀) × {𝐴}) ++ ((0..^𝑁) × {𝐴})) ∘f (.r𝐾)(𝑈 ++ 𝑉)))
108 frlmfzoccat.u . . . . 5 (𝜑𝑈𝐶)
109 frlmfzoccat.x . . . . . 6 𝑋 = (𝐾 freeLMod (0..^𝑀))
110 frlmfzoccat.c . . . . . 6 𝐶 = (Base‘𝑋)
111 frlmvscadiccat.s . . . . . 6 𝑆 = (Base‘𝐾)
112109, 110, 111frlmfzowrd 39733 . . . . 5 (𝑈𝐶𝑈 ∈ Word 𝑆)
113108, 112syl 17 . . . 4 (𝜑𝑈 ∈ Word 𝑆)
114 frlmfzoccat.v . . . . 5 (𝜑𝑉𝐷)
115 frlmfzoccat.y . . . . . 6 𝑌 = (𝐾 freeLMod (0..^𝑁))
116 frlmfzoccat.d . . . . . 6 𝐷 = (Base‘𝑌)
117115, 116, 111frlmfzowrd 39733 . . . . 5 (𝑉𝐷𝑉 ∈ Word 𝑆)
118114, 117syl 17 . . . 4 (𝜑𝑉 ∈ Word 𝑆)
11916, 19syl5eq 2806 . . . . 5 (𝜑 → (♯‘((0..^𝑀) × {𝐴})) = ((♯‘(0..^𝑀)) · 1))
120 ovexd 7186 . . . . . . . 8 (𝜑 → (0..^𝑀) ∈ V)
121109, 111, 110frlmbasf 20518 . . . . . . . 8 (((0..^𝑀) ∈ V ∧ 𝑈𝐶) → 𝑈:(0..^𝑀)⟶𝑆)
122120, 108, 121syl2anc 588 . . . . . . 7 (𝜑𝑈:(0..^𝑀)⟶𝑆)
123122ffnd 6500 . . . . . 6 (𝜑𝑈 Fn (0..^𝑀))
124 hashfn 13779 . . . . . 6 (𝑈 Fn (0..^𝑀) → (♯‘𝑈) = (♯‘(0..^𝑀)))
125123, 124syl 17 . . . . 5 (𝜑 → (♯‘𝑈) = (♯‘(0..^𝑀)))
12623, 119, 1253eqtr4d 2804 . . . 4 (𝜑 → (♯‘((0..^𝑀) × {𝐴})) = (♯‘𝑈))
12732, 36eqtrd 2794 . . . . . 6 (𝜑 → ((♯‘(0..^𝑁)) · (♯‘{𝐴})) = (♯‘(0..^𝑁)))
12831, 127syl5eq 2806 . . . . 5 (𝜑 → (♯‘((0..^𝑁) × {𝐴})) = (♯‘(0..^𝑁)))
129 ovexd 7186 . . . . . . . 8 (𝜑 → (0..^𝑁) ∈ V)
130115, 111, 116frlmbasf 20518 . . . . . . . 8 (((0..^𝑁) ∈ V ∧ 𝑉𝐷) → 𝑉:(0..^𝑁)⟶𝑆)
131129, 114, 130syl2anc 588 . . . . . . 7 (𝜑𝑉:(0..^𝑁)⟶𝑆)
132131ffnd 6500 . . . . . 6 (𝜑𝑉 Fn (0..^𝑁))
133 hashfn 13779 . . . . . 6 (𝑉 Fn (0..^𝑁) → (♯‘𝑉) = (♯‘(0..^𝑁)))
134132, 133syl 17 . . . . 5 (𝜑 → (♯‘𝑉) = (♯‘(0..^𝑁)))
135128, 134eqtr4d 2797 . . . 4 (𝜑 → (♯‘((0..^𝑁) × {𝐴})) = (♯‘𝑉))
1367, 10, 113, 118, 126, 135ofccat 14369 . . 3 (𝜑 → ((((0..^𝑀) × {𝐴}) ++ ((0..^𝑁) × {𝐴})) ∘f (.r𝐾)(𝑈 ++ 𝑉)) = ((((0..^𝑀) × {𝐴}) ∘f (.r𝐾)𝑈) ++ (((0..^𝑁) × {𝐴}) ∘f (.r𝐾)𝑉)))
137107, 136eqtrd 2794 . 2 (𝜑 → (((0..^𝐿) × {𝐴}) ∘f (.r𝐾)(𝑈 ++ 𝑉)) = ((((0..^𝑀) × {𝐴}) ∘f (.r𝐾)𝑈) ++ (((0..^𝑁) × {𝐴}) ∘f (.r𝐾)𝑉)))
138 frlmfzoccat.w . . 3 𝑊 = (𝐾 freeLMod (0..^𝐿))
139 frlmfzoccat.b . . 3 𝐵 = (Base‘𝑊)
140 ovexd 7186 . . 3 (𝜑 → (0..^𝐿) ∈ V)
141 frlmfzoccat.k . . . 4 (𝜑𝐾𝑍)
142138, 109, 115, 139, 110, 116, 141, 43, 24, 37, 108, 114frlmfzoccat 39736 . . 3 (𝜑 → (𝑈 ++ 𝑉) ∈ 𝐵)
143 frlmvscadiccat.o . . 3 𝑂 = ( ·𝑠𝑊)
144 eqid 2759 . . 3 (.r𝐾) = (.r𝐾)
145138, 139, 111, 140, 1, 142, 143, 144frlmvscafval 20524 . 2 (𝜑 → (𝐴𝑂(𝑈 ++ 𝑉)) = (((0..^𝐿) × {𝐴}) ∘f (.r𝐾)(𝑈 ++ 𝑉)))
146 frlmvscadiccat.p . . . 4 = ( ·𝑠𝑋)
147109, 110, 111, 120, 1, 108, 146, 144frlmvscafval 20524 . . 3 (𝜑 → (𝐴 𝑈) = (((0..^𝑀) × {𝐴}) ∘f (.r𝐾)𝑈))
148 frlmvscadiccat.q . . . 4 · = ( ·𝑠𝑌)
149115, 116, 111, 129, 1, 114, 148, 144frlmvscafval 20524 . . 3 (𝜑 → (𝐴 · 𝑉) = (((0..^𝑁) × {𝐴}) ∘f (.r𝐾)𝑉))
150147, 149oveq12d 7169 . 2 (𝜑 → ((𝐴 𝑈) ++ (𝐴 · 𝑉)) = ((((0..^𝑀) × {𝐴}) ∘f (.r𝐾)𝑈) ++ (((0..^𝑁) × {𝐴}) ∘f (.r𝐾)𝑉)))
151137, 145, 1503eqtr4d 2804 1 (𝜑 → (𝐴𝑂(𝑈 ++ 𝑉)) = ((𝐴 𝑈) ++ (𝐴 · 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 400   = wceq 1539  wcel 2112  Vcvv 3410  ifcif 4421  {csn 4523   class class class wbr 5033   × cxp 5523   Fn wfn 6331  wf 6332  cfv 6336  (class class class)co 7151  f cof 7404  Fincfn 8528  0cc0 10568  1c1 10569   + caddc 10571   · cmul 10573   < clt 10706  cle 10707  cmin 10901  0cn0 11927  cz 12013  cuz 12275  ..^cfzo 13075  chash 13733  Word cword 13906   ++ cconcat 13962  Basecbs 16534  .rcmulr 16617   ·𝑠 cvsca 16620   freeLMod cfrlm 20504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-er 8300  df-map 8419  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8860  df-sup 8932  df-dju 9356  df-card 9394  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-nn 11668  df-2 11730  df-3 11731  df-4 11732  df-5 11733  df-6 11734  df-7 11735  df-8 11736  df-9 11737  df-n0 11928  df-z 12014  df-dec 12131  df-uz 12276  df-fz 12933  df-fzo 13076  df-hash 13734  df-word 13907  df-concat 13963  df-struct 16536  df-ndx 16537  df-slot 16538  df-base 16540  df-sets 16541  df-ress 16542  df-plusg 16629  df-mulr 16630  df-sca 16632  df-vsca 16633  df-ip 16634  df-tset 16635  df-ple 16636  df-ds 16638  df-hom 16640  df-cco 16641  df-0g 16766  df-prds 16772  df-pws 16774  df-sra 20005  df-rgmod 20006  df-dsmm 20490  df-frlm 20505
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator