MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpasscan2 Structured version   Visualization version   GIF version

Theorem grpasscan2 18899
Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
grplcan.b 𝐵 = (Base‘𝐺)
grplcan.p + = (+g𝐺)
grpasscan1.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpasscan2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑁𝑌)) + 𝑌) = 𝑋)

Proof of Theorem grpasscan2
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Grp)
2 simp2 1137 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
3 grplcan.b . . . . 5 𝐵 = (Base‘𝐺)
4 grpasscan1.n . . . . 5 𝑁 = (invg𝐺)
53, 4grpinvcl 18884 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
653adant2 1131 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
7 simp3 1138 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
8 grplcan.p . . . 4 + = (+g𝐺)
93, 8grpass 18839 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵𝑌𝐵)) → ((𝑋 + (𝑁𝑌)) + 𝑌) = (𝑋 + ((𝑁𝑌) + 𝑌)))
101, 2, 6, 7, 9syl13anc 1374 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑁𝑌)) + 𝑌) = (𝑋 + ((𝑁𝑌) + 𝑌)))
11 eqid 2729 . . . . 5 (0g𝐺) = (0g𝐺)
123, 8, 11, 4grplinv 18886 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((𝑁𝑌) + 𝑌) = (0g𝐺))
13123adant2 1131 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑌) + 𝑌) = (0g𝐺))
1413oveq2d 7369 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + ((𝑁𝑌) + 𝑌)) = (𝑋 + (0g𝐺)))
153, 8, 11grprid 18865 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0g𝐺)) = 𝑋)
16153adant3 1132 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (0g𝐺)) = 𝑋)
1710, 14, 163eqtrd 2768 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑁𝑌)) + 𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  0gc0g 17361  Grpcgrp 18830  invgcminusg 18831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-riota 7310  df-ov 7356  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834
This theorem is referenced by:  mulgaddcomlem  18994  grpasscan2d  42480
  Copyright terms: Public domain W3C validator