MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpasscan2 Structured version   Visualization version   GIF version

Theorem grpasscan2 18941
Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
grplcan.b 𝐵 = (Base‘𝐺)
grplcan.p + = (+g𝐺)
grpasscan1.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpasscan2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑁𝑌)) + 𝑌) = 𝑋)

Proof of Theorem grpasscan2
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Grp)
2 simp2 1137 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
3 grplcan.b . . . . 5 𝐵 = (Base‘𝐺)
4 grpasscan1.n . . . . 5 𝑁 = (invg𝐺)
53, 4grpinvcl 18926 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
653adant2 1131 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
7 simp3 1138 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
8 grplcan.p . . . 4 + = (+g𝐺)
93, 8grpass 18881 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵𝑌𝐵)) → ((𝑋 + (𝑁𝑌)) + 𝑌) = (𝑋 + ((𝑁𝑌) + 𝑌)))
101, 2, 6, 7, 9syl13anc 1374 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑁𝑌)) + 𝑌) = (𝑋 + ((𝑁𝑌) + 𝑌)))
11 eqid 2730 . . . . 5 (0g𝐺) = (0g𝐺)
123, 8, 11, 4grplinv 18928 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((𝑁𝑌) + 𝑌) = (0g𝐺))
13123adant2 1131 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑌) + 𝑌) = (0g𝐺))
1413oveq2d 7406 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + ((𝑁𝑌) + 𝑌)) = (𝑋 + (0g𝐺)))
153, 8, 11grprid 18907 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0g𝐺)) = 𝑋)
16153adant3 1132 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (0g𝐺)) = 𝑋)
1710, 14, 163eqtrd 2769 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑁𝑌)) + 𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Grpcgrp 18872  invgcminusg 18873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-riota 7347  df-ov 7393  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876
This theorem is referenced by:  mulgaddcomlem  19036  grpasscan2d  42502
  Copyright terms: Public domain W3C validator