Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpcominv2 Structured version   Visualization version   GIF version

Theorem grpcominv2 42482
Description: If two elements commute, then they commute with each other's inverses (case of the second element commuting with the inverse of the first element). (Contributed by SN, 1-Feb-2025.)
Hypotheses
Ref Expression
grpcominv.b 𝐵 = (Base‘𝐺)
grpcominv.p + = (+g𝐺)
grpcominv.n 𝑁 = (invg𝐺)
grpcominv.g (𝜑𝐺 ∈ Grp)
grpcominv.x (𝜑𝑋𝐵)
grpcominv.y (𝜑𝑌𝐵)
grpcominv.1 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Assertion
Ref Expression
grpcominv2 (𝜑 → (𝑌 + (𝑁𝑋)) = ((𝑁𝑋) + 𝑌))

Proof of Theorem grpcominv2
StepHypRef Expression
1 grpcominv.b . 2 𝐵 = (Base‘𝐺)
2 grpcominv.p . 2 + = (+g𝐺)
3 grpcominv.n . 2 𝑁 = (invg𝐺)
4 grpcominv.g . 2 (𝜑𝐺 ∈ Grp)
5 grpcominv.y . 2 (𝜑𝑌𝐵)
6 grpcominv.x . 2 (𝜑𝑋𝐵)
7 grpcominv.1 . . 3 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
87eqcomd 2735 . 2 (𝜑 → (𝑌 + 𝑋) = (𝑋 + 𝑌))
91, 2, 3, 4, 5, 6, 8grpcominv1 42481 1 (𝜑 → (𝑌 + (𝑁𝑋)) = ((𝑁𝑋) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  Grpcgrp 18830  invgcminusg 18831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-riota 7310  df-ov 7356  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator