![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grpcominv2 | Structured version Visualization version GIF version |
Description: If two elements commute, then they commute with each other's inverses (case of the second element commuting with the inverse of the first element). (Contributed by SN, 1-Feb-2025.) |
Ref | Expression |
---|---|
grpcominv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpcominv.p | ⊢ + = (+g‘𝐺) |
grpcominv.n | ⊢ 𝑁 = (invg‘𝐺) |
grpcominv.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
grpcominv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
grpcominv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
grpcominv.1 | ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Ref | Expression |
---|---|
grpcominv2 | ⊢ (𝜑 → (𝑌 + (𝑁‘𝑋)) = ((𝑁‘𝑋) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpcominv.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpcominv.p | . 2 ⊢ + = (+g‘𝐺) | |
3 | grpcominv.n | . 2 ⊢ 𝑁 = (invg‘𝐺) | |
4 | grpcominv.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
5 | grpcominv.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | grpcominv.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | grpcominv.1 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | |
8 | 7 | eqcomd 2743 | . 2 ⊢ (𝜑 → (𝑌 + 𝑋) = (𝑋 + 𝑌)) |
9 | 1, 2, 3, 4, 5, 6, 8 | grpcominv1 42511 | 1 ⊢ (𝜑 → (𝑌 + (𝑁‘𝑋)) = ((𝑁‘𝑋) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 +gcplusg 17307 Grpcgrp 18973 invgcminusg 18974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fv 6577 df-riota 7395 df-ov 7441 df-0g 17497 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-grp 18976 df-minusg 18977 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |