Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpcominv2 Structured version   Visualization version   GIF version

Theorem grpcominv2 42627
Description: If two elements commute, then they commute with each other's inverses (case of the second element commuting with the inverse of the first element). (Contributed by SN, 1-Feb-2025.)
Hypotheses
Ref Expression
grpcominv.b 𝐵 = (Base‘𝐺)
grpcominv.p + = (+g𝐺)
grpcominv.n 𝑁 = (invg𝐺)
grpcominv.g (𝜑𝐺 ∈ Grp)
grpcominv.x (𝜑𝑋𝐵)
grpcominv.y (𝜑𝑌𝐵)
grpcominv.1 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Assertion
Ref Expression
grpcominv2 (𝜑 → (𝑌 + (𝑁𝑋)) = ((𝑁𝑋) + 𝑌))

Proof of Theorem grpcominv2
StepHypRef Expression
1 grpcominv.b . 2 𝐵 = (Base‘𝐺)
2 grpcominv.p . 2 + = (+g𝐺)
3 grpcominv.n . 2 𝑁 = (invg𝐺)
4 grpcominv.g . 2 (𝜑𝐺 ∈ Grp)
5 grpcominv.y . 2 (𝜑𝑌𝐵)
6 grpcominv.x . 2 (𝜑𝑋𝐵)
7 grpcominv.1 . . 3 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
87eqcomd 2739 . 2 (𝜑 → (𝑌 + 𝑋) = (𝑋 + 𝑌))
91, 2, 3, 4, 5, 6, 8grpcominv1 42626 1 (𝜑 → (𝑌 + (𝑁𝑋)) = ((𝑁𝑋) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  Grpcgrp 18848  invgcminusg 18849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-riota 7309  df-ov 7355  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator