![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grpcominv2 | Structured version Visualization version GIF version |
Description: If two elements commute, then they commute with each other's inverses (case of the second element commuting with the inverse of the first element). (Contributed by SN, 1-Feb-2025.) |
Ref | Expression |
---|---|
grpcominv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpcominv.p | ⊢ + = (+g‘𝐺) |
grpcominv.n | ⊢ 𝑁 = (invg‘𝐺) |
grpcominv.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
grpcominv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
grpcominv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
grpcominv.1 | ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Ref | Expression |
---|---|
grpcominv2 | ⊢ (𝜑 → (𝑌 + (𝑁‘𝑋)) = ((𝑁‘𝑋) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpcominv.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpcominv.p | . 2 ⊢ + = (+g‘𝐺) | |
3 | grpcominv.n | . 2 ⊢ 𝑁 = (invg‘𝐺) | |
4 | grpcominv.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
5 | grpcominv.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | grpcominv.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | grpcominv.1 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | |
8 | 7 | eqcomd 2739 | . 2 ⊢ (𝜑 → (𝑌 + 𝑋) = (𝑋 + 𝑌)) |
9 | 1, 2, 3, 4, 5, 6, 8 | grpcominv1 41082 | 1 ⊢ (𝜑 → (𝑌 + (𝑁‘𝑋)) = ((𝑁‘𝑋) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ‘cfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 Grpcgrp 18819 invgcminusg 18820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-riota 7365 df-ov 7412 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |