| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grpcominv2 | Structured version Visualization version GIF version | ||
| Description: If two elements commute, then they commute with each other's inverses (case of the second element commuting with the inverse of the first element). (Contributed by SN, 1-Feb-2025.) |
| Ref | Expression |
|---|---|
| grpcominv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcominv.p | ⊢ + = (+g‘𝐺) |
| grpcominv.n | ⊢ 𝑁 = (invg‘𝐺) |
| grpcominv.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grpcominv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| grpcominv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| grpcominv.1 | ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Ref | Expression |
|---|---|
| grpcominv2 | ⊢ (𝜑 → (𝑌 + (𝑁‘𝑋)) = ((𝑁‘𝑋) + 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpcominv.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpcominv.p | . 2 ⊢ + = (+g‘𝐺) | |
| 3 | grpcominv.n | . 2 ⊢ 𝑁 = (invg‘𝐺) | |
| 4 | grpcominv.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 5 | grpcominv.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | grpcominv.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | grpcominv.1 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | |
| 8 | 7 | eqcomd 2736 | . 2 ⊢ (𝜑 → (𝑌 + 𝑋) = (𝑋 + 𝑌)) |
| 9 | 1, 2, 3, 4, 5, 6, 8 | grpcominv1 42489 | 1 ⊢ (𝜑 → (𝑌 + (𝑁‘𝑋)) = ((𝑁‘𝑋) + 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 Grpcgrp 18871 invgcminusg 18872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-riota 7346 df-ov 7392 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |