![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grpcominv2 | Structured version Visualization version GIF version |
Description: If two elements commute, then they commute with each other's inverses (case of the second element commuting with the inverse of the first element). (Contributed by SN, 1-Feb-2025.) |
Ref | Expression |
---|---|
grpcominv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpcominv.p | ⊢ + = (+g‘𝐺) |
grpcominv.n | ⊢ 𝑁 = (invg‘𝐺) |
grpcominv.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
grpcominv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
grpcominv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
grpcominv.1 | ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Ref | Expression |
---|---|
grpcominv2 | ⊢ (𝜑 → (𝑌 + (𝑁‘𝑋)) = ((𝑁‘𝑋) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpcominv.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpcominv.p | . 2 ⊢ + = (+g‘𝐺) | |
3 | grpcominv.n | . 2 ⊢ 𝑁 = (invg‘𝐺) | |
4 | grpcominv.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
5 | grpcominv.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | grpcominv.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | grpcominv.1 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | |
8 | 7 | eqcomd 2746 | . 2 ⊢ (𝜑 → (𝑌 + 𝑋) = (𝑋 + 𝑌)) |
9 | 1, 2, 3, 4, 5, 6, 8 | grpcominv1 42465 | 1 ⊢ (𝜑 → (𝑌 + (𝑁‘𝑋)) = ((𝑁‘𝑋) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6575 (class class class)co 7450 Basecbs 17260 +gcplusg 17313 Grpcgrp 18975 invgcminusg 18976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-fv 6583 df-riota 7406 df-ov 7453 df-0g 17503 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-grp 18978 df-minusg 18979 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |