| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > finsubmsubg | Structured version Visualization version GIF version | ||
| Description: A submonoid of a finite group is a subgroup. This does not extend to infinite groups, as the submonoid ℕ0 of the group (ℤ, + ) shows. Note also that the union of a submonoid and its inverses need not be a submonoid, as the submonoid (ℕ0 ∖ {1}) of the group (ℤ, + ) shows: 3 is in that submonoid, -2 is the inverse of 2, but 1 is not in their union. Or simply, the subgroup generated by (ℕ0 ∖ {1}) is ℤ, not (ℤ ∖ {1, -1}). (Contributed by SN, 31-Jan-2025.) |
| Ref | Expression |
|---|---|
| finsubmsubg.b | ⊢ 𝐵 = (Base‘𝐺) |
| finsubmsubg.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| finsubmsubg.s | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) |
| finsubmsubg.1 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| Ref | Expression |
|---|---|
| finsubmsubg | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ (od‘𝐺) = (od‘𝐺) | |
| 2 | finsubmsubg.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 3 | finsubmsubg.s | . 2 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) | |
| 4 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐺 ∈ Grp) |
| 5 | finsubmsubg.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐵 ∈ Fin) |
| 7 | finsubmsubg.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 8 | 7 | submss 18717 | . . . . . 6 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ 𝐵) |
| 9 | 3, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 10 | 9 | sselda 3929 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ 𝐵) |
| 11 | 7, 1 | odcl2 19477 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑎 ∈ 𝐵) → ((od‘𝐺)‘𝑎) ∈ ℕ) |
| 12 | 4, 6, 10, 11 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((od‘𝐺)‘𝑎) ∈ ℕ) |
| 13 | 12 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑆 ((od‘𝐺)‘𝑎) ∈ ℕ) |
| 14 | 1, 2, 3, 13 | finodsubmsubg 19479 | 1 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6481 Fincfn 8869 ℕcn 12125 Basecbs 17120 SubMndcsubmnd 18690 Grpcgrp 18846 SubGrpcsubg 19033 odcod 19436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-od 19440 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |