Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finsubmsubg Structured version   Visualization version   GIF version

Theorem finsubmsubg 42613
Description: A submonoid of a finite group is a subgroup. This does not extend to infinite groups, as the submonoid 0 of the group (ℤ, + ) shows. Note also that the union of a submonoid and its inverses need not be a submonoid, as the submonoid (ℕ0 ∖ {1}) of the group (ℤ, + ) shows: 3 is in that submonoid, -2 is the inverse of 2, but 1 is not in their union. Or simply, the subgroup generated by (ℕ0 ∖ {1}) is , not (ℤ ∖ {1, -1}). (Contributed by SN, 31-Jan-2025.)
Hypotheses
Ref Expression
finsubmsubg.b 𝐵 = (Base‘𝐺)
finsubmsubg.g (𝜑𝐺 ∈ Grp)
finsubmsubg.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
finsubmsubg.1 (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
finsubmsubg (𝜑𝑆 ∈ (SubGrp‘𝐺))

Proof of Theorem finsubmsubg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . 2 (od‘𝐺) = (od‘𝐺)
2 finsubmsubg.g . 2 (𝜑𝐺 ∈ Grp)
3 finsubmsubg.s . 2 (𝜑𝑆 ∈ (SubMnd‘𝐺))
42adantr 480 . . . 4 ((𝜑𝑎𝑆) → 𝐺 ∈ Grp)
5 finsubmsubg.1 . . . . 5 (𝜑𝐵 ∈ Fin)
65adantr 480 . . . 4 ((𝜑𝑎𝑆) → 𝐵 ∈ Fin)
7 finsubmsubg.b . . . . . . 7 𝐵 = (Base‘𝐺)
87submss 18717 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆𝐵)
93, 8syl 17 . . . . 5 (𝜑𝑆𝐵)
109sselda 3929 . . . 4 ((𝜑𝑎𝑆) → 𝑎𝐵)
117, 1odcl2 19477 . . . 4 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑎𝐵) → ((od‘𝐺)‘𝑎) ∈ ℕ)
124, 6, 10, 11syl3anc 1373 . . 3 ((𝜑𝑎𝑆) → ((od‘𝐺)‘𝑎) ∈ ℕ)
1312ralrimiva 3124 . 2 (𝜑 → ∀𝑎𝑆 ((od‘𝐺)‘𝑎) ∈ ℕ)
141, 2, 3, 13finodsubmsubg 19479 1 (𝜑𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3897  cfv 6481  Fincfn 8869  cn 12125  Basecbs 17120  SubMndcsubmnd 18690  Grpcgrp 18846  SubGrpcsubg 19033  odcod 19436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-od 19440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator