Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finsubmsubg Structured version   Visualization version   GIF version

Theorem finsubmsubg 41805
Description: A submonoid of a finite group is a subgroup. This does not extend to infinite groups, as the submonoid 0 of the group (ℤ, + ) shows. Note also that the union of a submonoid and its inverses need not be a submonoid, as the submonoid (ℕ0 ∖ {1}) of the group (ℤ, + ) shows: 3 is in that submonoid, -2 is the inverse of 2, but 1 is not in their union. Or simply, the subgroup generated by (ℕ0 ∖ {1}) is , not (ℤ ∖ {1, -1}). (Contributed by SN, 31-Jan-2025.)
Hypotheses
Ref Expression
finsubmsubg.b 𝐵 = (Base‘𝐺)
finsubmsubg.g (𝜑𝐺 ∈ Grp)
finsubmsubg.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
finsubmsubg.1 (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
finsubmsubg (𝜑𝑆 ∈ (SubGrp‘𝐺))

Proof of Theorem finsubmsubg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . 2 (od‘𝐺) = (od‘𝐺)
2 finsubmsubg.g . 2 (𝜑𝐺 ∈ Grp)
3 finsubmsubg.s . 2 (𝜑𝑆 ∈ (SubMnd‘𝐺))
42adantr 479 . . . 4 ((𝜑𝑎𝑆) → 𝐺 ∈ Grp)
5 finsubmsubg.1 . . . . 5 (𝜑𝐵 ∈ Fin)
65adantr 479 . . . 4 ((𝜑𝑎𝑆) → 𝐵 ∈ Fin)
7 finsubmsubg.b . . . . . . 7 𝐵 = (Base‘𝐺)
87submss 18763 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆𝐵)
93, 8syl 17 . . . . 5 (𝜑𝑆𝐵)
109sselda 3972 . . . 4 ((𝜑𝑎𝑆) → 𝑎𝐵)
117, 1odcl2 19522 . . . 4 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑎𝐵) → ((od‘𝐺)‘𝑎) ∈ ℕ)
124, 6, 10, 11syl3anc 1368 . . 3 ((𝜑𝑎𝑆) → ((od‘𝐺)‘𝑎) ∈ ℕ)
1312ralrimiva 3136 . 2 (𝜑 → ∀𝑎𝑆 ((od‘𝐺)‘𝑎) ∈ ℕ)
141, 2, 3, 13finodsubmsubg 19524 1 (𝜑𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wss 3940  cfv 6542  Fincfn 8960  cn 12240  Basecbs 17177  SubMndcsubmnd 18736  Grpcgrp 18892  SubGrpcsubg 19077  odcod 19481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-inf2 9662  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-oadd 8487  df-omul 8488  df-er 8721  df-map 8843  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-sup 9463  df-inf 9464  df-oi 9531  df-card 9960  df-acn 9963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-n0 12501  df-z 12587  df-uz 12851  df-rp 13005  df-fz 13515  df-fl 13787  df-mod 13865  df-seq 13997  df-exp 14057  df-cj 15076  df-re 15077  df-im 15078  df-sqrt 15212  df-abs 15213  df-dvds 16229  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-0g 17420  df-mgm 18597  df-sgrp 18676  df-mnd 18692  df-submnd 18738  df-grp 18895  df-minusg 18896  df-sbg 18897  df-mulg 19026  df-subg 19080  df-od 19485
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator