![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > finsubmsubg | Structured version Visualization version GIF version |
Description: A submonoid of a finite group is a subgroup. This does not extend to infinite groups, as the submonoid ℕ0 of the group (ℤ, + ) shows. Note also that the union of a submonoid and its inverses need not be a submonoid, as the submonoid (ℕ0 ∖ {1}) of the group (ℤ, + ) shows: 3 is in that submonoid, -2 is the inverse of 2, but 1 is not in their union. Or simply, the subgroup generated by (ℕ0 ∖ {1}) is ℤ, not (ℤ ∖ {1, -1}). (Contributed by SN, 31-Jan-2025.) |
Ref | Expression |
---|---|
finsubmsubg.b | ⊢ 𝐵 = (Base‘𝐺) |
finsubmsubg.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
finsubmsubg.s | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) |
finsubmsubg.1 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
Ref | Expression |
---|---|
finsubmsubg | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . 2 ⊢ (od‘𝐺) = (od‘𝐺) | |
2 | finsubmsubg.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
3 | finsubmsubg.s | . 2 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) | |
4 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐺 ∈ Grp) |
5 | finsubmsubg.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐵 ∈ Fin) |
7 | finsubmsubg.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
8 | 7 | submss 18844 | . . . . . 6 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ 𝐵) |
9 | 3, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
10 | 9 | sselda 3998 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ 𝐵) |
11 | 7, 1 | odcl2 19607 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑎 ∈ 𝐵) → ((od‘𝐺)‘𝑎) ∈ ℕ) |
12 | 4, 6, 10, 11 | syl3anc 1372 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((od‘𝐺)‘𝑎) ∈ ℕ) |
13 | 12 | ralrimiva 3146 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑆 ((od‘𝐺)‘𝑎) ∈ ℕ) |
14 | 1, 2, 3, 13 | finodsubmsubg 19609 | 1 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3966 ‘cfv 6569 Fincfn 8993 ℕcn 12273 Basecbs 17254 SubMndcsubmnd 18817 Grpcgrp 18973 SubGrpcsubg 19160 odcod 19566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-inf2 9688 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-oadd 8518 df-omul 8519 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-sup 9489 df-inf 9490 df-oi 9557 df-card 9986 df-acn 9989 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-n0 12534 df-z 12621 df-uz 12886 df-rp 13042 df-fz 13554 df-fl 13838 df-mod 13916 df-seq 14049 df-exp 14109 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-dvds 16297 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-0g 17497 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-od 19570 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |