Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finsubmsubg Structured version   Visualization version   GIF version

Theorem finsubmsubg 42513
Description: A submonoid of a finite group is a subgroup. This does not extend to infinite groups, as the submonoid 0 of the group (ℤ, + ) shows. Note also that the union of a submonoid and its inverses need not be a submonoid, as the submonoid (ℕ0 ∖ {1}) of the group (ℤ, + ) shows: 3 is in that submonoid, -2 is the inverse of 2, but 1 is not in their union. Or simply, the subgroup generated by (ℕ0 ∖ {1}) is , not (ℤ ∖ {1, -1}). (Contributed by SN, 31-Jan-2025.)
Hypotheses
Ref Expression
finsubmsubg.b 𝐵 = (Base‘𝐺)
finsubmsubg.g (𝜑𝐺 ∈ Grp)
finsubmsubg.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
finsubmsubg.1 (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
finsubmsubg (𝜑𝑆 ∈ (SubGrp‘𝐺))

Proof of Theorem finsubmsubg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . 2 (od‘𝐺) = (od‘𝐺)
2 finsubmsubg.g . 2 (𝜑𝐺 ∈ Grp)
3 finsubmsubg.s . 2 (𝜑𝑆 ∈ (SubMnd‘𝐺))
42adantr 480 . . . 4 ((𝜑𝑎𝑆) → 𝐺 ∈ Grp)
5 finsubmsubg.1 . . . . 5 (𝜑𝐵 ∈ Fin)
65adantr 480 . . . 4 ((𝜑𝑎𝑆) → 𝐵 ∈ Fin)
7 finsubmsubg.b . . . . . . 7 𝐵 = (Base‘𝐺)
87submss 18844 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆𝐵)
93, 8syl 17 . . . . 5 (𝜑𝑆𝐵)
109sselda 3998 . . . 4 ((𝜑𝑎𝑆) → 𝑎𝐵)
117, 1odcl2 19607 . . . 4 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑎𝐵) → ((od‘𝐺)‘𝑎) ∈ ℕ)
124, 6, 10, 11syl3anc 1372 . . 3 ((𝜑𝑎𝑆) → ((od‘𝐺)‘𝑎) ∈ ℕ)
1312ralrimiva 3146 . 2 (𝜑 → ∀𝑎𝑆 ((od‘𝐺)‘𝑎) ∈ ℕ)
141, 2, 3, 13finodsubmsubg 19609 1 (𝜑𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3966  cfv 6569  Fincfn 8993  cn 12273  Basecbs 17254  SubMndcsubmnd 18817  Grpcgrp 18973  SubGrpcsubg 19160  odcod 19566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-inf2 9688  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-se 5646  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-isom 6578  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-oadd 8518  df-omul 8519  df-er 8753  df-map 8876  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-sup 9489  df-inf 9490  df-oi 9557  df-card 9986  df-acn 9989  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-3 12337  df-n0 12534  df-z 12621  df-uz 12886  df-rp 13042  df-fz 13554  df-fl 13838  df-mod 13916  df-seq 14049  df-exp 14109  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-dvds 16297  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-ress 17284  df-plusg 17320  df-0g 17497  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-od 19570
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator