| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2anc2 | Structured version Visualization version GIF version | ||
| Description: Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023.) |
| Ref | Expression |
|---|---|
| syl2anc2.1 | ⊢ (𝜑 → 𝜓) |
| syl2anc2.2 | ⊢ (𝜓 → 𝜒) |
| syl2anc2.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anc2 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anc2.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2anc2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | syl2anc2.3 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 5 | 1, 3, 4 | syl2anc 584 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: php4 9174 djulepw 10146 infdjuabs 10158 xrsupss 13269 xrinfmss 13270 trclfv 14966 isumsplit 15806 ram0 16993 0mhm 18746 grpidssd 18948 gexdvds 19514 lsmdisj2 19612 mulgnn0di 19755 odadd1 19778 gsumval3 19837 telgsums 19923 dprdfadd 19952 rnglz 20074 rngrz 20075 zrrnghm 20445 lspsneq 21032 rnglidl0 21139 rngqiprngimf1 21210 rngqiprngfulem5 21225 dsmmacl 21650 mplsubglem 21908 scmatmhm 22421 mdetuni0 22508 mndifsplit 22523 chfacfscmulgsum 22747 chfacfpmmulgsum 22751 alexsublem 23931 ovolunlem1 25398 mbfi1fseqlem4 25619 deg1lt 26002 deg1invg 26011 mon1pid 26059 sspz 30664 0lno 30719 pjhth 31322 pjhtheu 31323 pjpreeq 31327 opsqrlem1 32069 pfx1s2 32860 gsumwun 33005 orng0le1 33290 0nellinds 33341 irredminply 33706 qqh1 33975 dnibndlem5 36470 relowlssretop 37351 mettrifi 37751 rngolz 37916 rngorz 37917 keridl 38026 lfl0f 39062 lkrlss 39088 lkrscss 39091 lkrin 39157 dihpN 41330 djh02 41407 lclkrlem1 41500 lclkr 41527 mon1psubm 43188 minregex 43523 clsneiel1 44097 stoweidlem22 46020 stoweidlem34 46032 sqwvfoura 46226 elaa2lem 46231 nzrneg1ne0 48218 onsetreclem2 49695 |
| Copyright terms: Public domain | W3C validator |