![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2anc2 | Structured version Visualization version GIF version |
Description: Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023.) |
Ref | Expression |
---|---|
syl2anc2.1 | ⊢ (𝜑 → 𝜓) |
syl2anc2.2 | ⊢ (𝜓 → 𝜒) |
syl2anc2.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anc2 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anc2.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl2anc2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
4 | syl2anc2.3 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
5 | 1, 3, 4 | syl2anc 584 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: ssnnfiOLD 9172 php4 9215 djulepw 10189 infdjuabs 10203 xrsupss 13290 xrinfmss 13291 trclfv 14949 isumsplit 15788 ram0 16957 0mhm 18702 grpidssd 18901 gexdvds 19454 lsmdisj2 19552 mulgnn0di 19695 odadd1 19718 gsumval3 19777 telgsums 19863 dprdfadd 19892 ringlz 20109 ringrz 20110 lspsneq 20741 dsmmacl 21302 mplsubglem 21564 scmatmhm 22043 mdetuni0 22130 mndifsplit 22145 chfacfscmulgsum 22369 chfacfpmmulgsum 22373 alexsublem 23555 ovolunlem1 25021 mbfi1fseqlem4 25243 deg1lt 25622 deg1invg 25631 sspz 30026 0lno 30081 pjhth 30684 pjhtheu 30685 pjpreeq 30689 opsqrlem1 31431 pfx1s2 32143 orng0le1 32471 0nellinds 32528 qqh1 33034 dnibndlem5 35444 relowlssretop 36330 mettrifi 36711 rngolz 36876 rngorz 36877 keridl 36986 lfl0f 38025 lkrlss 38051 lkrscss 38054 lkrin 38120 dihpN 40293 djh02 40370 lclkrlem1 40463 lclkr 40490 mon1pid 42029 mon1psubm 42030 minregex 42367 clsneiel1 42941 stoweidlem22 44817 stoweidlem34 44829 sqwvfoura 45023 elaa2lem 45028 nzrneg1ne0 46722 rnglz 46743 rngrz 46744 zrrnghm 46795 rnglidl0 46831 rngqiprngimf1 46864 rngqiprngfulem5 46879 onsetreclem2 47829 |
Copyright terms: Public domain | W3C validator |