Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2anc2 | Structured version Visualization version GIF version |
Description: Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023.) |
Ref | Expression |
---|---|
syl2anc2.1 | ⊢ (𝜑 → 𝜓) |
syl2anc2.2 | ⊢ (𝜓 → 𝜒) |
syl2anc2.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anc2 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anc2.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl2anc2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
4 | syl2anc2.3 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
5 | 1, 3, 4 | syl2anc 584 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: ssnnfiOLD 8962 php4 9005 djulepw 9957 infdjuabs 9971 xrsupss 13052 xrinfmss 13053 trclfv 14720 isumsplit 15561 ram0 16732 0mhm 18467 grpidssd 18660 gexdvds 19198 lsmdisj2 19297 mulgnn0di 19436 odadd1 19458 gsumval3 19517 telgsums 19603 dprdfadd 19632 ringlz 19835 ringrz 19836 lspsneq 20393 dsmmacl 20957 mplsubglem 21214 scmatmhm 21692 mdetuni0 21779 mndifsplit 21794 chfacfscmulgsum 22018 chfacfpmmulgsum 22022 alexsublem 23204 ovolunlem1 24670 mbfi1fseqlem4 24892 deg1lt 25271 deg1invg 25280 sspz 29106 0lno 29161 pjhth 29764 pjhtheu 29765 pjpreeq 29769 opsqrlem1 30511 pfx1s2 31222 orng0le1 31520 0nellinds 31575 qqh1 31944 dnibndlem5 34671 relowlssretop 35543 mettrifi 35924 rngolz 36089 rngorz 36090 keridl 36199 lfl0f 37090 lkrlss 37116 lkrscss 37119 lkrin 37185 dihpN 39357 djh02 39434 lclkrlem1 39527 lclkr 39554 mon1pid 41037 mon1psubm 41038 minregex 41148 clsneiel1 41725 stoweidlem22 43570 stoweidlem34 43582 sqwvfoura 43776 elaa2lem 43781 nzrneg1ne0 45438 rnglz 45453 zrrnghm 45486 onsetreclem2 46422 |
Copyright terms: Public domain | W3C validator |