![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2anc2 | Structured version Visualization version GIF version |
Description: Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023.) |
Ref | Expression |
---|---|
syl2anc2.1 | ⊢ (𝜑 → 𝜓) |
syl2anc2.2 | ⊢ (𝜓 → 𝜒) |
syl2anc2.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anc2 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anc2.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl2anc2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
4 | syl2anc2.3 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
5 | 1, 3, 4 | syl2anc 584 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: ssnnfiOLD 9169 php4 9212 djulepw 10186 infdjuabs 10200 xrsupss 13287 xrinfmss 13288 trclfv 14946 isumsplit 15785 ram0 16954 0mhm 18699 grpidssd 18898 gexdvds 19451 lsmdisj2 19549 mulgnn0di 19692 odadd1 19715 gsumval3 19774 telgsums 19860 dprdfadd 19889 ringlz 20106 ringrz 20107 lspsneq 20734 dsmmacl 21295 mplsubglem 21557 scmatmhm 22035 mdetuni0 22122 mndifsplit 22137 chfacfscmulgsum 22361 chfacfpmmulgsum 22365 alexsublem 23547 ovolunlem1 25013 mbfi1fseqlem4 25235 deg1lt 25614 deg1invg 25623 sspz 29983 0lno 30038 pjhth 30641 pjhtheu 30642 pjpreeq 30646 opsqrlem1 31388 pfx1s2 32100 orng0le1 32425 0nellinds 32478 qqh1 32960 dnibndlem5 35353 relowlssretop 36239 mettrifi 36620 rngolz 36785 rngorz 36786 keridl 36895 lfl0f 37934 lkrlss 37960 lkrscss 37963 lkrin 38029 dihpN 40202 djh02 40279 lclkrlem1 40372 lclkr 40399 mon1pid 41937 mon1psubm 41938 minregex 42275 clsneiel1 42849 stoweidlem22 44728 stoweidlem34 44740 sqwvfoura 44934 elaa2lem 44939 nzrneg1ne0 46633 rnglz 46654 rngrz 46655 zrrnghm 46706 rnglidl0 46742 rngqiprngimf1 46775 rngqiprngfulem5 46790 onsetreclem2 47741 |
Copyright terms: Public domain | W3C validator |