![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2anc2 | Structured version Visualization version GIF version |
Description: Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023.) |
Ref | Expression |
---|---|
syl2anc2.1 | ⊢ (𝜑 → 𝜓) |
syl2anc2.2 | ⊢ (𝜓 → 𝜒) |
syl2anc2.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anc2 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anc2.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl2anc2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
4 | syl2anc2.3 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
5 | 1, 3, 4 | syl2anc 583 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ssnnfiOLD 9236 php4 9276 djulepw 10262 infdjuabs 10274 xrsupss 13371 xrinfmss 13372 trclfv 15049 isumsplit 15888 ram0 17069 0mhm 18854 grpidssd 19056 gexdvds 19626 lsmdisj2 19724 mulgnn0di 19867 odadd1 19890 gsumval3 19949 telgsums 20035 dprdfadd 20064 rnglz 20192 rngrz 20193 zrrnghm 20562 lspsneq 21147 rnglidl0 21262 rngqiprngimf1 21333 rngqiprngfulem5 21348 dsmmacl 21784 mplsubglem 22042 scmatmhm 22561 mdetuni0 22648 mndifsplit 22663 chfacfscmulgsum 22887 chfacfpmmulgsum 22891 alexsublem 24073 ovolunlem1 25551 mbfi1fseqlem4 25773 deg1lt 26156 deg1invg 26165 mon1pid 26213 sspz 30767 0lno 30822 pjhth 31425 pjhtheu 31426 pjpreeq 31430 opsqrlem1 32172 pfx1s2 32905 orng0le1 33307 0nellinds 33363 irredminply 33707 qqh1 33931 dnibndlem5 36448 relowlssretop 37329 mettrifi 37717 rngolz 37882 rngorz 37883 keridl 37992 lfl0f 39025 lkrlss 39051 lkrscss 39054 lkrin 39120 dihpN 41293 djh02 41370 lclkrlem1 41463 lclkr 41490 mon1psubm 43160 minregex 43496 clsneiel1 44070 stoweidlem22 45943 stoweidlem34 45955 sqwvfoura 46149 elaa2lem 46154 nzrneg1ne0 47953 onsetreclem2 48798 |
Copyright terms: Public domain | W3C validator |