| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2anc2 | Structured version Visualization version GIF version | ||
| Description: Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023.) |
| Ref | Expression |
|---|---|
| syl2anc2.1 | ⊢ (𝜑 → 𝜓) |
| syl2anc2.2 | ⊢ (𝜓 → 𝜒) |
| syl2anc2.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anc2 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anc2.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2anc2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | syl2anc2.3 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 5 | 1, 3, 4 | syl2anc 584 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: php4 9129 djulepw 10094 infdjuabs 10106 xrsupss 13218 xrinfmss 13219 trclfv 14917 isumsplit 15757 ram0 16944 0mhm 18737 grpidssd 18939 gexdvds 19506 lsmdisj2 19604 mulgnn0di 19747 odadd1 19770 gsumval3 19829 telgsums 19915 dprdfadd 19944 rnglz 20093 rngrz 20094 zrrnghm 20461 orng0le1 20799 lspsneq 21069 rnglidl0 21176 rngqiprngimf1 21247 rngqiprngfulem5 21262 dsmmacl 21688 mplsubglem 21946 scmatmhm 22459 mdetuni0 22546 mndifsplit 22561 chfacfscmulgsum 22785 chfacfpmmulgsum 22789 alexsublem 23969 ovolunlem1 25435 mbfi1fseqlem4 25656 deg1lt 26039 deg1invg 26048 mon1pid 26096 sspz 30726 0lno 30781 pjhth 31384 pjhtheu 31385 pjpreeq 31389 opsqrlem1 32131 pfx1s2 32931 gsumwun 33056 0nellinds 33346 irredminply 33740 qqh1 34009 dnibndlem5 36537 relowlssretop 37418 mettrifi 37807 rngolz 37972 rngorz 37973 keridl 38082 lfl0f 39178 lkrlss 39204 lkrscss 39207 lkrin 39273 dihpN 41445 djh02 41522 lclkrlem1 41615 lclkr 41642 mon1psubm 43306 minregex 43641 clsneiel1 44215 stoweidlem22 46134 stoweidlem34 46146 sqwvfoura 46340 elaa2lem 46345 nzrneg1ne0 48344 onsetreclem2 49821 |
| Copyright terms: Public domain | W3C validator |