| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2anc2 | Structured version Visualization version GIF version | ||
| Description: Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023.) |
| Ref | Expression |
|---|---|
| syl2anc2.1 | ⊢ (𝜑 → 𝜓) |
| syl2anc2.2 | ⊢ (𝜓 → 𝜒) |
| syl2anc2.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anc2 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anc2.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2anc2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | syl2anc2.3 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 5 | 1, 3, 4 | syl2anc 584 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: php4 9134 djulepw 10106 infdjuabs 10118 xrsupss 13229 xrinfmss 13230 trclfv 14925 isumsplit 15765 ram0 16952 0mhm 18711 grpidssd 18913 gexdvds 19481 lsmdisj2 19579 mulgnn0di 19722 odadd1 19745 gsumval3 19804 telgsums 19890 dprdfadd 19919 rnglz 20068 rngrz 20069 zrrnghm 20439 orng0le1 20777 lspsneq 21047 rnglidl0 21154 rngqiprngimf1 21225 rngqiprngfulem5 21240 dsmmacl 21666 mplsubglem 21924 scmatmhm 22437 mdetuni0 22524 mndifsplit 22539 chfacfscmulgsum 22763 chfacfpmmulgsum 22767 alexsublem 23947 ovolunlem1 25414 mbfi1fseqlem4 25635 deg1lt 26018 deg1invg 26027 mon1pid 26075 sspz 30697 0lno 30752 pjhth 31355 pjhtheu 31356 pjpreeq 31360 opsqrlem1 32102 pfx1s2 32893 gsumwun 33031 0nellinds 33317 irredminply 33682 qqh1 33951 dnibndlem5 36455 relowlssretop 37336 mettrifi 37736 rngolz 37901 rngorz 37902 keridl 38011 lfl0f 39047 lkrlss 39073 lkrscss 39076 lkrin 39142 dihpN 41315 djh02 41392 lclkrlem1 41485 lclkr 41512 mon1psubm 43172 minregex 43507 clsneiel1 44081 stoweidlem22 46004 stoweidlem34 46016 sqwvfoura 46210 elaa2lem 46215 nzrneg1ne0 48202 onsetreclem2 49679 |
| Copyright terms: Public domain | W3C validator |