| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2anc2 | Structured version Visualization version GIF version | ||
| Description: Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023.) |
| Ref | Expression |
|---|---|
| syl2anc2.1 | ⊢ (𝜑 → 𝜓) |
| syl2anc2.2 | ⊢ (𝜓 → 𝜒) |
| syl2anc2.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anc2 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anc2.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2anc2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | syl2anc2.3 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 5 | 1, 3, 4 | syl2anc 584 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: php4 9224 djulepw 10207 infdjuabs 10219 xrsupss 13325 xrinfmss 13326 trclfv 15019 isumsplit 15856 ram0 17042 0mhm 18797 grpidssd 18999 gexdvds 19565 lsmdisj2 19663 mulgnn0di 19806 odadd1 19829 gsumval3 19888 telgsums 19974 dprdfadd 20003 rnglz 20125 rngrz 20126 zrrnghm 20496 lspsneq 21083 rnglidl0 21190 rngqiprngimf1 21261 rngqiprngfulem5 21276 dsmmacl 21701 mplsubglem 21959 scmatmhm 22472 mdetuni0 22559 mndifsplit 22574 chfacfscmulgsum 22798 chfacfpmmulgsum 22802 alexsublem 23982 ovolunlem1 25450 mbfi1fseqlem4 25671 deg1lt 26054 deg1invg 26063 mon1pid 26111 sspz 30716 0lno 30771 pjhth 31374 pjhtheu 31375 pjpreeq 31379 opsqrlem1 32121 pfx1s2 32914 gsumwun 33059 orng0le1 33334 0nellinds 33385 irredminply 33750 qqh1 34016 dnibndlem5 36500 relowlssretop 37381 mettrifi 37781 rngolz 37946 rngorz 37947 keridl 38056 lfl0f 39087 lkrlss 39113 lkrscss 39116 lkrin 39182 dihpN 41355 djh02 41432 lclkrlem1 41525 lclkr 41552 mon1psubm 43223 minregex 43558 clsneiel1 44132 stoweidlem22 46051 stoweidlem34 46063 sqwvfoura 46257 elaa2lem 46262 nzrneg1ne0 48205 onsetreclem2 49570 |
| Copyright terms: Public domain | W3C validator |