![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2anc2 | Structured version Visualization version GIF version |
Description: Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023.) |
Ref | Expression |
---|---|
syl2anc2.1 | ⊢ (𝜑 → 𝜓) |
syl2anc2.2 | ⊢ (𝜓 → 𝜒) |
syl2anc2.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anc2 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anc2.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl2anc2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
4 | syl2anc2.3 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
5 | 1, 3, 4 | syl2anc 585 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: ssnnfiOLD 9170 php4 9213 djulepw 10187 infdjuabs 10201 xrsupss 13288 xrinfmss 13289 trclfv 14947 isumsplit 15786 ram0 16955 0mhm 18700 grpidssd 18899 gexdvds 19452 lsmdisj2 19550 mulgnn0di 19693 odadd1 19716 gsumval3 19775 telgsums 19861 dprdfadd 19890 ringlz 20107 ringrz 20108 lspsneq 20735 dsmmacl 21296 mplsubglem 21558 scmatmhm 22036 mdetuni0 22123 mndifsplit 22138 chfacfscmulgsum 22362 chfacfpmmulgsum 22366 alexsublem 23548 ovolunlem1 25014 mbfi1fseqlem4 25236 deg1lt 25615 deg1invg 25624 sspz 29988 0lno 30043 pjhth 30646 pjhtheu 30647 pjpreeq 30651 opsqrlem1 31393 pfx1s2 32105 orng0le1 32430 0nellinds 32483 qqh1 32965 dnibndlem5 35358 relowlssretop 36244 mettrifi 36625 rngolz 36790 rngorz 36791 keridl 36900 lfl0f 37939 lkrlss 37965 lkrscss 37968 lkrin 38034 dihpN 40207 djh02 40284 lclkrlem1 40377 lclkr 40404 mon1pid 41947 mon1psubm 41948 minregex 42285 clsneiel1 42859 stoweidlem22 44738 stoweidlem34 44750 sqwvfoura 44944 elaa2lem 44949 nzrneg1ne0 46643 rnglz 46664 rngrz 46665 zrrnghm 46716 rnglidl0 46752 rngqiprngimf1 46785 rngqiprngfulem5 46800 onsetreclem2 47751 |
Copyright terms: Public domain | W3C validator |