![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2anc2 | Structured version Visualization version GIF version |
Description: Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023.) |
Ref | Expression |
---|---|
syl2anc2.1 | ⊢ (𝜑 → 𝜓) |
syl2anc2.2 | ⊢ (𝜓 → 𝜒) |
syl2anc2.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anc2 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anc2.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl2anc2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
4 | syl2anc2.3 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
5 | 1, 3, 4 | syl2anc 584 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: php4 9247 djulepw 10230 infdjuabs 10242 xrsupss 13347 xrinfmss 13348 trclfv 15035 isumsplit 15872 ram0 17055 0mhm 18844 grpidssd 19046 gexdvds 19616 lsmdisj2 19714 mulgnn0di 19857 odadd1 19880 gsumval3 19939 telgsums 20025 dprdfadd 20054 rnglz 20182 rngrz 20183 zrrnghm 20552 lspsneq 21141 rnglidl0 21256 rngqiprngimf1 21327 rngqiprngfulem5 21342 dsmmacl 21778 mplsubglem 22036 scmatmhm 22555 mdetuni0 22642 mndifsplit 22657 chfacfscmulgsum 22881 chfacfpmmulgsum 22885 alexsublem 24067 ovolunlem1 25545 mbfi1fseqlem4 25767 deg1lt 26150 deg1invg 26159 mon1pid 26207 sspz 30763 0lno 30818 pjhth 31421 pjhtheu 31422 pjpreeq 31426 opsqrlem1 32168 pfx1s2 32907 gsumwun 33050 orng0le1 33321 0nellinds 33377 irredminply 33721 qqh1 33947 dnibndlem5 36464 relowlssretop 37345 mettrifi 37743 rngolz 37908 rngorz 37909 keridl 38018 lfl0f 39050 lkrlss 39076 lkrscss 39079 lkrin 39145 dihpN 41318 djh02 41395 lclkrlem1 41488 lclkr 41515 mon1psubm 43187 minregex 43523 clsneiel1 44097 stoweidlem22 45977 stoweidlem34 45989 sqwvfoura 46183 elaa2lem 46188 nzrneg1ne0 48073 onsetreclem2 48936 |
Copyright terms: Public domain | W3C validator |