Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2anc2 | Structured version Visualization version GIF version |
Description: Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023.) |
Ref | Expression |
---|---|
syl2anc2.1 | ⊢ (𝜑 → 𝜓) |
syl2anc2.2 | ⊢ (𝜓 → 𝜒) |
syl2anc2.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anc2 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anc2.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl2anc2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
4 | syl2anc2.3 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
5 | 1, 3, 4 | syl2anc 583 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: php4 8900 ssnnfiOLD 8915 djulepw 9879 infdjuabs 9893 xrsupss 12972 xrinfmss 12973 trclfv 14639 isumsplit 15480 ram0 16651 0mhm 18373 grpidssd 18566 gexdvds 19104 lsmdisj2 19203 mulgnn0di 19342 odadd1 19364 gsumval3 19423 telgsums 19509 dprdfadd 19538 ringlz 19741 ringrz 19742 lspsneq 20299 dsmmacl 20858 mplsubglem 21115 scmatmhm 21591 mdetuni0 21678 mndifsplit 21693 chfacfscmulgsum 21917 chfacfpmmulgsum 21921 alexsublem 23103 ovolunlem1 24566 mbfi1fseqlem4 24788 deg1lt 25167 deg1invg 25176 sspz 28998 0lno 29053 pjhth 29656 pjhtheu 29657 pjpreeq 29661 opsqrlem1 30403 pfx1s2 31115 orng0le1 31413 0nellinds 31468 qqh1 31835 dnibndlem5 34589 relowlssretop 35461 mettrifi 35842 rngolz 36007 rngorz 36008 keridl 36117 lfl0f 37010 lkrlss 37036 lkrscss 37039 lkrin 37105 dihpN 39277 djh02 39354 lclkrlem1 39447 lclkr 39474 mon1pid 40946 mon1psubm 40947 clsneiel1 41607 stoweidlem22 43453 stoweidlem34 43465 sqwvfoura 43659 elaa2lem 43664 nzrneg1ne0 45315 rnglz 45330 zrrnghm 45363 onsetreclem2 46297 |
Copyright terms: Public domain | W3C validator |