| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2anc2 | Structured version Visualization version GIF version | ||
| Description: Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023.) |
| Ref | Expression |
|---|---|
| syl2anc2.1 | ⊢ (𝜑 → 𝜓) |
| syl2anc2.2 | ⊢ (𝜓 → 𝜒) |
| syl2anc2.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anc2 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anc2.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2anc2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | syl2anc2.3 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 5 | 1, 3, 4 | syl2anc 584 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: php4 9114 djulepw 10076 infdjuabs 10088 xrsupss 13200 xrinfmss 13201 trclfv 14899 isumsplit 15739 ram0 16926 0mhm 18719 grpidssd 18921 gexdvds 19489 lsmdisj2 19587 mulgnn0di 19730 odadd1 19753 gsumval3 19812 telgsums 19898 dprdfadd 19927 rnglz 20076 rngrz 20077 zrrnghm 20444 orng0le1 20782 lspsneq 21052 rnglidl0 21159 rngqiprngimf1 21230 rngqiprngfulem5 21245 dsmmacl 21671 mplsubglem 21929 scmatmhm 22442 mdetuni0 22529 mndifsplit 22544 chfacfscmulgsum 22768 chfacfpmmulgsum 22772 alexsublem 23952 ovolunlem1 25418 mbfi1fseqlem4 25639 deg1lt 26022 deg1invg 26031 mon1pid 26079 sspz 30705 0lno 30760 pjhth 31363 pjhtheu 31364 pjpreeq 31368 opsqrlem1 32110 pfx1s2 32910 gsumwun 33035 0nellinds 33325 irredminply 33719 qqh1 33988 dnibndlem5 36495 relowlssretop 37376 mettrifi 37776 rngolz 37941 rngorz 37942 keridl 38051 lfl0f 39087 lkrlss 39113 lkrscss 39116 lkrin 39182 dihpN 41354 djh02 41431 lclkrlem1 41524 lclkr 41551 mon1psubm 43211 minregex 43546 clsneiel1 44120 stoweidlem22 46039 stoweidlem34 46051 sqwvfoura 46245 elaa2lem 46250 nzrneg1ne0 48240 onsetreclem2 49717 |
| Copyright terms: Public domain | W3C validator |