| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2anc2 | Structured version Visualization version GIF version | ||
| Description: Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023.) |
| Ref | Expression |
|---|---|
| syl2anc2.1 | ⊢ (𝜑 → 𝜓) |
| syl2anc2.2 | ⊢ (𝜓 → 𝜒) |
| syl2anc2.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anc2 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anc2.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2anc2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | syl2anc2.3 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 5 | 1, 3, 4 | syl2anc 584 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: php4 9180 djulepw 10153 infdjuabs 10165 xrsupss 13276 xrinfmss 13277 trclfv 14973 isumsplit 15813 ram0 17000 0mhm 18753 grpidssd 18955 gexdvds 19521 lsmdisj2 19619 mulgnn0di 19762 odadd1 19785 gsumval3 19844 telgsums 19930 dprdfadd 19959 rnglz 20081 rngrz 20082 zrrnghm 20452 lspsneq 21039 rnglidl0 21146 rngqiprngimf1 21217 rngqiprngfulem5 21232 dsmmacl 21657 mplsubglem 21915 scmatmhm 22428 mdetuni0 22515 mndifsplit 22530 chfacfscmulgsum 22754 chfacfpmmulgsum 22758 alexsublem 23938 ovolunlem1 25405 mbfi1fseqlem4 25626 deg1lt 26009 deg1invg 26018 mon1pid 26066 sspz 30671 0lno 30726 pjhth 31329 pjhtheu 31330 pjpreeq 31334 opsqrlem1 32076 pfx1s2 32867 gsumwun 33012 orng0le1 33297 0nellinds 33348 irredminply 33713 qqh1 33982 dnibndlem5 36477 relowlssretop 37358 mettrifi 37758 rngolz 37923 rngorz 37924 keridl 38033 lfl0f 39069 lkrlss 39095 lkrscss 39098 lkrin 39164 dihpN 41337 djh02 41414 lclkrlem1 41507 lclkr 41534 mon1psubm 43195 minregex 43530 clsneiel1 44104 stoweidlem22 46027 stoweidlem34 46039 sqwvfoura 46233 elaa2lem 46238 nzrneg1ne0 48222 onsetreclem2 49699 |
| Copyright terms: Public domain | W3C validator |