MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvssd Structured version   Visualization version   GIF version

Theorem grpinvssd 18949
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the elements of the first group have the same inverses in both groups. (Contributed by AV, 15-Mar-2019.)
Hypotheses
Ref Expression
grpidssd.m (𝜑𝑀 ∈ Grp)
grpidssd.s (𝜑𝑆 ∈ Grp)
grpidssd.b 𝐵 = (Base‘𝑆)
grpidssd.c (𝜑𝐵 ⊆ (Base‘𝑀))
grpidssd.o (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦))
Assertion
Ref Expression
grpinvssd (𝜑 → (𝑋𝐵 → ((invg𝑆)‘𝑋) = ((invg𝑀)‘𝑋)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem grpinvssd
StepHypRef Expression
1 grpidssd.s . . . . . 6 (𝜑𝑆 ∈ Grp)
2 grpidssd.b . . . . . . 7 𝐵 = (Base‘𝑆)
3 eqid 2729 . . . . . . 7 (invg𝑆) = (invg𝑆)
42, 3grpinvcl 18919 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑋𝐵) → ((invg𝑆)‘𝑋) ∈ 𝐵)
51, 4sylan 580 . . . . 5 ((𝜑𝑋𝐵) → ((invg𝑆)‘𝑋) ∈ 𝐵)
6 simpr 484 . . . . 5 ((𝜑𝑋𝐵) → 𝑋𝐵)
7 grpidssd.o . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦))
87adantr 480 . . . . 5 ((𝜑𝑋𝐵) → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦))
9 oveq1 7394 . . . . . . 7 (𝑥 = ((invg𝑆)‘𝑋) → (𝑥(+g𝑀)𝑦) = (((invg𝑆)‘𝑋)(+g𝑀)𝑦))
10 oveq1 7394 . . . . . . 7 (𝑥 = ((invg𝑆)‘𝑋) → (𝑥(+g𝑆)𝑦) = (((invg𝑆)‘𝑋)(+g𝑆)𝑦))
119, 10eqeq12d 2745 . . . . . 6 (𝑥 = ((invg𝑆)‘𝑋) → ((𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦) ↔ (((invg𝑆)‘𝑋)(+g𝑀)𝑦) = (((invg𝑆)‘𝑋)(+g𝑆)𝑦)))
12 oveq2 7395 . . . . . . 7 (𝑦 = 𝑋 → (((invg𝑆)‘𝑋)(+g𝑀)𝑦) = (((invg𝑆)‘𝑋)(+g𝑀)𝑋))
13 oveq2 7395 . . . . . . 7 (𝑦 = 𝑋 → (((invg𝑆)‘𝑋)(+g𝑆)𝑦) = (((invg𝑆)‘𝑋)(+g𝑆)𝑋))
1412, 13eqeq12d 2745 . . . . . 6 (𝑦 = 𝑋 → ((((invg𝑆)‘𝑋)(+g𝑀)𝑦) = (((invg𝑆)‘𝑋)(+g𝑆)𝑦) ↔ (((invg𝑆)‘𝑋)(+g𝑀)𝑋) = (((invg𝑆)‘𝑋)(+g𝑆)𝑋)))
1511, 14rspc2va 3600 . . . . 5 (((((invg𝑆)‘𝑋) ∈ 𝐵𝑋𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦)) → (((invg𝑆)‘𝑋)(+g𝑀)𝑋) = (((invg𝑆)‘𝑋)(+g𝑆)𝑋))
165, 6, 8, 15syl21anc 837 . . . 4 ((𝜑𝑋𝐵) → (((invg𝑆)‘𝑋)(+g𝑀)𝑋) = (((invg𝑆)‘𝑋)(+g𝑆)𝑋))
17 eqid 2729 . . . . . 6 (+g𝑆) = (+g𝑆)
18 eqid 2729 . . . . . 6 (0g𝑆) = (0g𝑆)
192, 17, 18, 3grplinv 18921 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑋𝐵) → (((invg𝑆)‘𝑋)(+g𝑆)𝑋) = (0g𝑆))
201, 19sylan 580 . . . 4 ((𝜑𝑋𝐵) → (((invg𝑆)‘𝑋)(+g𝑆)𝑋) = (0g𝑆))
21 grpidssd.m . . . . . 6 (𝜑𝑀 ∈ Grp)
22 grpidssd.c . . . . . . 7 (𝜑𝐵 ⊆ (Base‘𝑀))
2322sselda 3946 . . . . . 6 ((𝜑𝑋𝐵) → 𝑋 ∈ (Base‘𝑀))
24 eqid 2729 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
25 eqid 2729 . . . . . . 7 (+g𝑀) = (+g𝑀)
26 eqid 2729 . . . . . . 7 (0g𝑀) = (0g𝑀)
27 eqid 2729 . . . . . . 7 (invg𝑀) = (invg𝑀)
2824, 25, 26, 27grplinv 18921 . . . . . 6 ((𝑀 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑀)) → (((invg𝑀)‘𝑋)(+g𝑀)𝑋) = (0g𝑀))
2921, 23, 28syl2an2r 685 . . . . 5 ((𝜑𝑋𝐵) → (((invg𝑀)‘𝑋)(+g𝑀)𝑋) = (0g𝑀))
3021, 1, 2, 22, 7grpidssd 18948 . . . . . 6 (𝜑 → (0g𝑀) = (0g𝑆))
3130adantr 480 . . . . 5 ((𝜑𝑋𝐵) → (0g𝑀) = (0g𝑆))
3229, 31eqtr2d 2765 . . . 4 ((𝜑𝑋𝐵) → (0g𝑆) = (((invg𝑀)‘𝑋)(+g𝑀)𝑋))
3316, 20, 323eqtrd 2768 . . 3 ((𝜑𝑋𝐵) → (((invg𝑆)‘𝑋)(+g𝑀)𝑋) = (((invg𝑀)‘𝑋)(+g𝑀)𝑋))
3421adantr 480 . . . 4 ((𝜑𝑋𝐵) → 𝑀 ∈ Grp)
3522adantr 480 . . . . 5 ((𝜑𝑋𝐵) → 𝐵 ⊆ (Base‘𝑀))
3635, 5sseldd 3947 . . . 4 ((𝜑𝑋𝐵) → ((invg𝑆)‘𝑋) ∈ (Base‘𝑀))
3724, 27grpinvcl 18919 . . . . 5 ((𝑀 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑀)) → ((invg𝑀)‘𝑋) ∈ (Base‘𝑀))
3821, 23, 37syl2an2r 685 . . . 4 ((𝜑𝑋𝐵) → ((invg𝑀)‘𝑋) ∈ (Base‘𝑀))
3924, 25grprcan 18905 . . . 4 ((𝑀 ∈ Grp ∧ (((invg𝑆)‘𝑋) ∈ (Base‘𝑀) ∧ ((invg𝑀)‘𝑋) ∈ (Base‘𝑀) ∧ 𝑋 ∈ (Base‘𝑀))) → ((((invg𝑆)‘𝑋)(+g𝑀)𝑋) = (((invg𝑀)‘𝑋)(+g𝑀)𝑋) ↔ ((invg𝑆)‘𝑋) = ((invg𝑀)‘𝑋)))
4034, 36, 38, 23, 39syl13anc 1374 . . 3 ((𝜑𝑋𝐵) → ((((invg𝑆)‘𝑋)(+g𝑀)𝑋) = (((invg𝑀)‘𝑋)(+g𝑀)𝑋) ↔ ((invg𝑆)‘𝑋) = ((invg𝑀)‘𝑋)))
4133, 40mpbid 232 . 2 ((𝜑𝑋𝐵) → ((invg𝑆)‘𝑋) = ((invg𝑀)‘𝑋))
4241ex 412 1 (𝜑 → (𝑋𝐵 → ((invg𝑆)‘𝑋) = ((invg𝑀)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3914  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Grpcgrp 18865  invgcminusg 18866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-riota 7344  df-ov 7390  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869
This theorem is referenced by:  grpissubg  19078
  Copyright terms: Public domain W3C validator