MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvssd Structured version   Visualization version   GIF version

Theorem grpinvssd 19048
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the elements of the first group have the same inverses in both groups. (Contributed by AV, 15-Mar-2019.)
Hypotheses
Ref Expression
grpidssd.m (𝜑𝑀 ∈ Grp)
grpidssd.s (𝜑𝑆 ∈ Grp)
grpidssd.b 𝐵 = (Base‘𝑆)
grpidssd.c (𝜑𝐵 ⊆ (Base‘𝑀))
grpidssd.o (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦))
Assertion
Ref Expression
grpinvssd (𝜑 → (𝑋𝐵 → ((invg𝑆)‘𝑋) = ((invg𝑀)‘𝑋)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem grpinvssd
StepHypRef Expression
1 grpidssd.s . . . . . 6 (𝜑𝑆 ∈ Grp)
2 grpidssd.b . . . . . . 7 𝐵 = (Base‘𝑆)
3 eqid 2735 . . . . . . 7 (invg𝑆) = (invg𝑆)
42, 3grpinvcl 19018 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑋𝐵) → ((invg𝑆)‘𝑋) ∈ 𝐵)
51, 4sylan 580 . . . . 5 ((𝜑𝑋𝐵) → ((invg𝑆)‘𝑋) ∈ 𝐵)
6 simpr 484 . . . . 5 ((𝜑𝑋𝐵) → 𝑋𝐵)
7 grpidssd.o . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦))
87adantr 480 . . . . 5 ((𝜑𝑋𝐵) → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦))
9 oveq1 7438 . . . . . . 7 (𝑥 = ((invg𝑆)‘𝑋) → (𝑥(+g𝑀)𝑦) = (((invg𝑆)‘𝑋)(+g𝑀)𝑦))
10 oveq1 7438 . . . . . . 7 (𝑥 = ((invg𝑆)‘𝑋) → (𝑥(+g𝑆)𝑦) = (((invg𝑆)‘𝑋)(+g𝑆)𝑦))
119, 10eqeq12d 2751 . . . . . 6 (𝑥 = ((invg𝑆)‘𝑋) → ((𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦) ↔ (((invg𝑆)‘𝑋)(+g𝑀)𝑦) = (((invg𝑆)‘𝑋)(+g𝑆)𝑦)))
12 oveq2 7439 . . . . . . 7 (𝑦 = 𝑋 → (((invg𝑆)‘𝑋)(+g𝑀)𝑦) = (((invg𝑆)‘𝑋)(+g𝑀)𝑋))
13 oveq2 7439 . . . . . . 7 (𝑦 = 𝑋 → (((invg𝑆)‘𝑋)(+g𝑆)𝑦) = (((invg𝑆)‘𝑋)(+g𝑆)𝑋))
1412, 13eqeq12d 2751 . . . . . 6 (𝑦 = 𝑋 → ((((invg𝑆)‘𝑋)(+g𝑀)𝑦) = (((invg𝑆)‘𝑋)(+g𝑆)𝑦) ↔ (((invg𝑆)‘𝑋)(+g𝑀)𝑋) = (((invg𝑆)‘𝑋)(+g𝑆)𝑋)))
1511, 14rspc2va 3634 . . . . 5 (((((invg𝑆)‘𝑋) ∈ 𝐵𝑋𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦)) → (((invg𝑆)‘𝑋)(+g𝑀)𝑋) = (((invg𝑆)‘𝑋)(+g𝑆)𝑋))
165, 6, 8, 15syl21anc 838 . . . 4 ((𝜑𝑋𝐵) → (((invg𝑆)‘𝑋)(+g𝑀)𝑋) = (((invg𝑆)‘𝑋)(+g𝑆)𝑋))
17 eqid 2735 . . . . . 6 (+g𝑆) = (+g𝑆)
18 eqid 2735 . . . . . 6 (0g𝑆) = (0g𝑆)
192, 17, 18, 3grplinv 19020 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑋𝐵) → (((invg𝑆)‘𝑋)(+g𝑆)𝑋) = (0g𝑆))
201, 19sylan 580 . . . 4 ((𝜑𝑋𝐵) → (((invg𝑆)‘𝑋)(+g𝑆)𝑋) = (0g𝑆))
21 grpidssd.m . . . . . 6 (𝜑𝑀 ∈ Grp)
22 grpidssd.c . . . . . . 7 (𝜑𝐵 ⊆ (Base‘𝑀))
2322sselda 3995 . . . . . 6 ((𝜑𝑋𝐵) → 𝑋 ∈ (Base‘𝑀))
24 eqid 2735 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
25 eqid 2735 . . . . . . 7 (+g𝑀) = (+g𝑀)
26 eqid 2735 . . . . . . 7 (0g𝑀) = (0g𝑀)
27 eqid 2735 . . . . . . 7 (invg𝑀) = (invg𝑀)
2824, 25, 26, 27grplinv 19020 . . . . . 6 ((𝑀 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑀)) → (((invg𝑀)‘𝑋)(+g𝑀)𝑋) = (0g𝑀))
2921, 23, 28syl2an2r 685 . . . . 5 ((𝜑𝑋𝐵) → (((invg𝑀)‘𝑋)(+g𝑀)𝑋) = (0g𝑀))
3021, 1, 2, 22, 7grpidssd 19047 . . . . . 6 (𝜑 → (0g𝑀) = (0g𝑆))
3130adantr 480 . . . . 5 ((𝜑𝑋𝐵) → (0g𝑀) = (0g𝑆))
3229, 31eqtr2d 2776 . . . 4 ((𝜑𝑋𝐵) → (0g𝑆) = (((invg𝑀)‘𝑋)(+g𝑀)𝑋))
3316, 20, 323eqtrd 2779 . . 3 ((𝜑𝑋𝐵) → (((invg𝑆)‘𝑋)(+g𝑀)𝑋) = (((invg𝑀)‘𝑋)(+g𝑀)𝑋))
3421adantr 480 . . . 4 ((𝜑𝑋𝐵) → 𝑀 ∈ Grp)
3522adantr 480 . . . . 5 ((𝜑𝑋𝐵) → 𝐵 ⊆ (Base‘𝑀))
3635, 5sseldd 3996 . . . 4 ((𝜑𝑋𝐵) → ((invg𝑆)‘𝑋) ∈ (Base‘𝑀))
3724, 27grpinvcl 19018 . . . . 5 ((𝑀 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑀)) → ((invg𝑀)‘𝑋) ∈ (Base‘𝑀))
3821, 23, 37syl2an2r 685 . . . 4 ((𝜑𝑋𝐵) → ((invg𝑀)‘𝑋) ∈ (Base‘𝑀))
3924, 25grprcan 19004 . . . 4 ((𝑀 ∈ Grp ∧ (((invg𝑆)‘𝑋) ∈ (Base‘𝑀) ∧ ((invg𝑀)‘𝑋) ∈ (Base‘𝑀) ∧ 𝑋 ∈ (Base‘𝑀))) → ((((invg𝑆)‘𝑋)(+g𝑀)𝑋) = (((invg𝑀)‘𝑋)(+g𝑀)𝑋) ↔ ((invg𝑆)‘𝑋) = ((invg𝑀)‘𝑋)))
4034, 36, 38, 23, 39syl13anc 1371 . . 3 ((𝜑𝑋𝐵) → ((((invg𝑆)‘𝑋)(+g𝑀)𝑋) = (((invg𝑀)‘𝑋)(+g𝑀)𝑋) ↔ ((invg𝑆)‘𝑋) = ((invg𝑀)‘𝑋)))
4133, 40mpbid 232 . 2 ((𝜑𝑋𝐵) → ((invg𝑆)‘𝑋) = ((invg𝑀)‘𝑋))
4241ex 412 1 (𝜑 → (𝑋𝐵 → ((invg𝑆)‘𝑋) = ((invg𝑀)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wss 3963  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Grpcgrp 18964  invgcminusg 18965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-riota 7388  df-ov 7434  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968
This theorem is referenced by:  grpissubg  19177
  Copyright terms: Public domain W3C validator