Proof of Theorem grpinvssd
Step | Hyp | Ref
| Expression |
1 | | grpidssd.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ Grp) |
2 | | grpidssd.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑆) |
3 | | eqid 2738 |
. . . . . . 7
⊢
(invg‘𝑆) = (invg‘𝑆) |
4 | 2, 3 | grpinvcl 18627 |
. . . . . 6
⊢ ((𝑆 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((invg‘𝑆)‘𝑋) ∈ 𝐵) |
5 | 1, 4 | sylan 580 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((invg‘𝑆)‘𝑋) ∈ 𝐵) |
6 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
7 | | grpidssd.o |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) |
8 | 7 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) |
9 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑥 = ((invg‘𝑆)‘𝑋) → (𝑥(+g‘𝑀)𝑦) = (((invg‘𝑆)‘𝑋)(+g‘𝑀)𝑦)) |
10 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑥 = ((invg‘𝑆)‘𝑋) → (𝑥(+g‘𝑆)𝑦) = (((invg‘𝑆)‘𝑋)(+g‘𝑆)𝑦)) |
11 | 9, 10 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑥 = ((invg‘𝑆)‘𝑋) → ((𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦) ↔ (((invg‘𝑆)‘𝑋)(+g‘𝑀)𝑦) = (((invg‘𝑆)‘𝑋)(+g‘𝑆)𝑦))) |
12 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → (((invg‘𝑆)‘𝑋)(+g‘𝑀)𝑦) = (((invg‘𝑆)‘𝑋)(+g‘𝑀)𝑋)) |
13 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → (((invg‘𝑆)‘𝑋)(+g‘𝑆)𝑦) = (((invg‘𝑆)‘𝑋)(+g‘𝑆)𝑋)) |
14 | 12, 13 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑦 = 𝑋 → ((((invg‘𝑆)‘𝑋)(+g‘𝑀)𝑦) = (((invg‘𝑆)‘𝑋)(+g‘𝑆)𝑦) ↔ (((invg‘𝑆)‘𝑋)(+g‘𝑀)𝑋) = (((invg‘𝑆)‘𝑋)(+g‘𝑆)𝑋))) |
15 | 11, 14 | rspc2va 3571 |
. . . . 5
⊢
(((((invg‘𝑆)‘𝑋) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) → (((invg‘𝑆)‘𝑋)(+g‘𝑀)𝑋) = (((invg‘𝑆)‘𝑋)(+g‘𝑆)𝑋)) |
16 | 5, 6, 8, 15 | syl21anc 835 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (((invg‘𝑆)‘𝑋)(+g‘𝑀)𝑋) = (((invg‘𝑆)‘𝑋)(+g‘𝑆)𝑋)) |
17 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝑆) = (+g‘𝑆) |
18 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝑆) = (0g‘𝑆) |
19 | 2, 17, 18, 3 | grplinv 18628 |
. . . . 5
⊢ ((𝑆 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (((invg‘𝑆)‘𝑋)(+g‘𝑆)𝑋) = (0g‘𝑆)) |
20 | 1, 19 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (((invg‘𝑆)‘𝑋)(+g‘𝑆)𝑋) = (0g‘𝑆)) |
21 | | grpidssd.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ Grp) |
22 | | grpidssd.c |
. . . . . . 7
⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑀)) |
23 | 22 | sselda 3921 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑀)) |
24 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑀) =
(Base‘𝑀) |
25 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝑀) = (+g‘𝑀) |
26 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑀) = (0g‘𝑀) |
27 | | eqid 2738 |
. . . . . . 7
⊢
(invg‘𝑀) = (invg‘𝑀) |
28 | 24, 25, 26, 27 | grplinv 18628 |
. . . . . 6
⊢ ((𝑀 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑀)) →
(((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑋) = (0g‘𝑀)) |
29 | 21, 23, 28 | syl2an2r 682 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑋) = (0g‘𝑀)) |
30 | 21, 1, 2, 22, 7 | grpidssd 18651 |
. . . . . 6
⊢ (𝜑 → (0g‘𝑀) = (0g‘𝑆)) |
31 | 30 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (0g‘𝑀) = (0g‘𝑆)) |
32 | 29, 31 | eqtr2d 2779 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (0g‘𝑆) =
(((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑋)) |
33 | 16, 20, 32 | 3eqtrd 2782 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (((invg‘𝑆)‘𝑋)(+g‘𝑀)𝑋) = (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑋)) |
34 | 21 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑀 ∈ Grp) |
35 | 22 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝐵 ⊆ (Base‘𝑀)) |
36 | 35, 5 | sseldd 3922 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((invg‘𝑆)‘𝑋) ∈ (Base‘𝑀)) |
37 | 24, 27 | grpinvcl 18627 |
. . . . 5
⊢ ((𝑀 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑀)) →
((invg‘𝑀)‘𝑋) ∈ (Base‘𝑀)) |
38 | 21, 23, 37 | syl2an2r 682 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((invg‘𝑀)‘𝑋) ∈ (Base‘𝑀)) |
39 | 24, 25 | grprcan 18613 |
. . . 4
⊢ ((𝑀 ∈ Grp ∧
(((invg‘𝑆)‘𝑋) ∈ (Base‘𝑀) ∧ ((invg‘𝑀)‘𝑋) ∈ (Base‘𝑀) ∧ 𝑋 ∈ (Base‘𝑀))) → ((((invg‘𝑆)‘𝑋)(+g‘𝑀)𝑋) = (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑋) ↔ ((invg‘𝑆)‘𝑋) = ((invg‘𝑀)‘𝑋))) |
40 | 34, 36, 38, 23, 39 | syl13anc 1371 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((((invg‘𝑆)‘𝑋)(+g‘𝑀)𝑋) = (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑋) ↔ ((invg‘𝑆)‘𝑋) = ((invg‘𝑀)‘𝑋))) |
41 | 33, 40 | mpbid 231 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((invg‘𝑆)‘𝑋) = ((invg‘𝑀)‘𝑋)) |
42 | 41 | ex 413 |
1
⊢ (𝜑 → (𝑋 ∈ 𝐵 → ((invg‘𝑆)‘𝑋) = ((invg‘𝑀)‘𝑋))) |