MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumz Structured version   Visualization version   GIF version

Theorem gsumz 18651
Description: Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypothesis
Ref Expression
gsumz.z 0 = (0g𝐺)
Assertion
Ref Expression
gsumz ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐺   𝑘,𝑉
Allowed substitution hint:   0 (𝑘)

Proof of Theorem gsumz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . 2 (Base‘𝐺) = (Base‘𝐺)
2 gsumz.z . 2 0 = (0g𝐺)
3 eqid 2733 . 2 (+g𝐺) = (+g𝐺)
4 eqid 2733 . 2 {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)} = {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)}
5 simpl 484 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → 𝐺 ∈ Mnd)
6 simpr 486 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → 𝐴𝑉)
72fvexi 6857 . . . . . 6 0 ∈ V
87snid 4623 . . . . 5 0 ∈ { 0 }
91, 2, 3, 4gsumvallem2 18649 . . . . 5 (𝐺 ∈ Mnd → {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)} = { 0 })
108, 9eleqtrrid 2841 . . . 4 (𝐺 ∈ Mnd → 0 ∈ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)})
1110ad2antrr 725 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑉) ∧ 𝑘𝐴) → 0 ∈ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)})
1211fmpttd 7064 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝑘𝐴0 ):𝐴⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)})
131, 2, 3, 4, 5, 6, 12gsumval1 18543 1 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3061  {crab 3406  {csn 4587  cmpt 5189  cfv 6497  (class class class)co 7358  Basecbs 17088  +gcplusg 17138  0gc0g 17326   Σg cgsu 17327  Mndcmnd 18561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-seq 13913  df-0g 17328  df-gsum 17329  df-mgm 18502  df-sgrp 18551  df-mnd 18562
This theorem is referenced by:  gsumval3  19689  gsumzres  19691  gsumzcl2  19692  gsumzf1o  19694  gsumzaddlem  19703  gsumzmhm  19719  gsumzoppg  19726  gsum2d  19754  dprdfeq0  19806  dprddisj2  19823  mplsubrglem  21426  evlslem1  21508  mhpsclcl  21553  mhpmulcl  21555  coe1tmmul2  21663  coe1tmmul  21664  cply1mul  21681  gsummoncoe1  21691  dmatmul  21862  smadiadetlem1a  22028  cpmatmcllem  22083  mp2pm2mplem4  22174  chfacfscmulgsum  22225  chfacfpmmulgsum  22229  tsms0  23509  tgptsmscls  23517  tdeglem4  25440  tdeglem4OLD  25441  mdegmullem  25459  dchrptlem3  26630  gsummptres  31943  gsummptres2  31944  freshmansdream  32116  elrspunidl  32251  lbsdiflsp0  32378  fedgmullem2  32382  esum0  32705  ply1mulgsumlem2  46554  lincvalsc0  46588  linc0scn0  46590
  Copyright terms: Public domain W3C validator