Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumz | Structured version Visualization version GIF version |
Description: Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
gsumz.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
gsumz | ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | gsumz.z | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2738 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | eqid 2738 | . 2 ⊢ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} = {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} | |
5 | simpl 483 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ Mnd) | |
6 | simpr 485 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
7 | 2 | fvexi 6788 | . . . . . 6 ⊢ 0 ∈ V |
8 | 7 | snid 4597 | . . . . 5 ⊢ 0 ∈ { 0 } |
9 | 1, 2, 3, 4 | gsumvallem2 18472 | . . . . 5 ⊢ (𝐺 ∈ Mnd → {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} = { 0 }) |
10 | 8, 9 | eleqtrrid 2846 | . . . 4 ⊢ (𝐺 ∈ Mnd → 0 ∈ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
11 | 10 | ad2antrr 723 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) ∧ 𝑘 ∈ 𝐴) → 0 ∈ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
12 | 11 | fmpttd 6989 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝑘 ∈ 𝐴 ↦ 0 ):𝐴⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
13 | 1, 2, 3, 4, 5, 6, 12 | gsumval1 18367 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 {csn 4561 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 0gc0g 17150 Σg cgsu 17151 Mndcmnd 18385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-seq 13722 df-0g 17152 df-gsum 17153 df-mgm 18326 df-sgrp 18375 df-mnd 18386 |
This theorem is referenced by: gsumval3 19508 gsumzres 19510 gsumzcl2 19511 gsumzf1o 19513 gsumzaddlem 19522 gsumzmhm 19538 gsumzoppg 19545 gsum2d 19573 dprdfeq0 19625 dprddisj2 19642 mplsubrglem 21210 evlslem1 21292 mhpsclcl 21337 mhpmulcl 21339 coe1tmmul2 21447 coe1tmmul 21448 cply1mul 21465 gsummoncoe1 21475 dmatmul 21646 smadiadetlem1a 21812 cpmatmcllem 21867 mp2pm2mplem4 21958 chfacfscmulgsum 22009 chfacfpmmulgsum 22013 tsms0 23293 tgptsmscls 23301 tdeglem4 25224 tdeglem4OLD 25225 mdegmullem 25243 dchrptlem3 26414 gsummptres 31312 gsummptres2 31313 freshmansdream 31484 elrspunidl 31606 lbsdiflsp0 31707 fedgmullem2 31711 esum0 32017 ply1mulgsumlem2 45728 lincvalsc0 45762 linc0scn0 45764 |
Copyright terms: Public domain | W3C validator |