MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumz Structured version   Visualization version   GIF version

Theorem gsumz 18710
Description: Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypothesis
Ref Expression
gsumz.z 0 = (0g𝐺)
Assertion
Ref Expression
gsumz ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐺   𝑘,𝑉
Allowed substitution hint:   0 (𝑘)

Proof of Theorem gsumz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (Base‘𝐺) = (Base‘𝐺)
2 gsumz.z . 2 0 = (0g𝐺)
3 eqid 2729 . 2 (+g𝐺) = (+g𝐺)
4 eqid 2729 . 2 {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)} = {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)}
5 simpl 482 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → 𝐺 ∈ Mnd)
6 simpr 484 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → 𝐴𝑉)
72fvexi 6836 . . . . . 6 0 ∈ V
87snid 4614 . . . . 5 0 ∈ { 0 }
91, 2, 3, 4gsumvallem2 18708 . . . . 5 (𝐺 ∈ Mnd → {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)} = { 0 })
108, 9eleqtrrid 2835 . . . 4 (𝐺 ∈ Mnd → 0 ∈ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)})
1110ad2antrr 726 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑉) ∧ 𝑘𝐴) → 0 ∈ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)})
1211fmpttd 7049 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝑘𝐴0 ):𝐴⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)})
131, 2, 3, 4, 5, 6, 12gsumval1 18557 1 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3394  {csn 4577  cmpt 5173  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-seq 13909  df-0g 17345  df-gsum 17346  df-mgm 18514  df-sgrp 18593  df-mnd 18609
This theorem is referenced by:  gsumval3  19786  gsumzres  19788  gsumzcl2  19789  gsumzf1o  19791  gsumzaddlem  19800  gsumzmhm  19816  gsumzoppg  19823  gsum2d  19851  dprdfeq0  19903  dprddisj2  19920  freshmansdream  21481  mplsubrglem  21911  evlslem1  21987  mhpsclcl  22032  mhpmulcl  22034  coe1tmmul2  22160  coe1tmmul  22161  cply1mul  22181  gsummoncoe1  22193  dmatmul  22382  smadiadetlem1a  22548  cpmatmcllem  22603  mp2pm2mplem4  22694  chfacfscmulgsum  22745  chfacfpmmulgsum  22749  tsms0  24027  tgptsmscls  24035  tdeglem4  25963  mdegmullem  25981  dchrptlem3  27175  gsummptres  33005  gsummptres2  33006  gsumfs2d  33008  elrgspnlem1  33182  elrgspnsubrunlem2  33188  elrspunidl  33365  rprmdvdsprod  33471  evl1deg1  33511  evl1deg2  33512  evl1deg3  33513  lbsdiflsp0  33593  fedgmullem2  33597  extdgfialglem2  33660  esum0  34016  ply1mulgsumlem2  48372  lincvalsc0  48406  linc0scn0  48408
  Copyright terms: Public domain W3C validator