MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumz Structured version   Visualization version   GIF version

Theorem gsumz 18862
Description: Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypothesis
Ref Expression
gsumz.z 0 = (0g𝐺)
Assertion
Ref Expression
gsumz ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐺   𝑘,𝑉
Allowed substitution hint:   0 (𝑘)

Proof of Theorem gsumz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . 2 (Base‘𝐺) = (Base‘𝐺)
2 gsumz.z . 2 0 = (0g𝐺)
3 eqid 2735 . 2 (+g𝐺) = (+g𝐺)
4 eqid 2735 . 2 {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)} = {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)}
5 simpl 482 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → 𝐺 ∈ Mnd)
6 simpr 484 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → 𝐴𝑉)
72fvexi 6921 . . . . . 6 0 ∈ V
87snid 4667 . . . . 5 0 ∈ { 0 }
91, 2, 3, 4gsumvallem2 18860 . . . . 5 (𝐺 ∈ Mnd → {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)} = { 0 })
108, 9eleqtrrid 2846 . . . 4 (𝐺 ∈ Mnd → 0 ∈ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)})
1110ad2antrr 726 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑉) ∧ 𝑘𝐴) → 0 ∈ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)})
1211fmpttd 7135 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝑘𝐴0 ):𝐴⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)})
131, 2, 3, 4, 5, 6, 12gsumval1 18709 1 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  {crab 3433  {csn 4631  cmpt 5231  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486   Σg cgsu 17487  Mndcmnd 18760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-seq 14040  df-0g 17488  df-gsum 17489  df-mgm 18666  df-sgrp 18745  df-mnd 18761
This theorem is referenced by:  gsumval3  19940  gsumzres  19942  gsumzcl2  19943  gsumzf1o  19945  gsumzaddlem  19954  gsumzmhm  19970  gsumzoppg  19977  gsum2d  20005  dprdfeq0  20057  dprddisj2  20074  freshmansdream  21611  mplsubrglem  22042  evlslem1  22124  mhpsclcl  22169  mhpmulcl  22171  coe1tmmul2  22295  coe1tmmul  22296  cply1mul  22316  gsummoncoe1  22328  dmatmul  22519  smadiadetlem1a  22685  cpmatmcllem  22740  mp2pm2mplem4  22831  chfacfscmulgsum  22882  chfacfpmmulgsum  22886  tsms0  24166  tgptsmscls  24174  tdeglem4  26114  mdegmullem  26132  dchrptlem3  27325  gsummptres  33038  gsummptres2  33039  gsumfs2d  33041  elrgspnlem1  33232  elrspunidl  33436  rprmdvdsprod  33542  evl1deg1  33581  evl1deg2  33582  evl1deg3  33583  lbsdiflsp0  33654  fedgmullem2  33658  esum0  34030  ply1mulgsumlem2  48233  lincvalsc0  48267  linc0scn0  48269
  Copyright terms: Public domain W3C validator