| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumz | Structured version Visualization version GIF version | ||
| Description: Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsumz.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| gsumz | ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | gsumz.z | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2729 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | eqid 2729 | . 2 ⊢ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} = {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} | |
| 5 | simpl 482 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ Mnd) | |
| 6 | simpr 484 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 7 | 2 | fvexi 6836 | . . . . . 6 ⊢ 0 ∈ V |
| 8 | 7 | snid 4614 | . . . . 5 ⊢ 0 ∈ { 0 } |
| 9 | 1, 2, 3, 4 | gsumvallem2 18708 | . . . . 5 ⊢ (𝐺 ∈ Mnd → {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} = { 0 }) |
| 10 | 8, 9 | eleqtrrid 2835 | . . . 4 ⊢ (𝐺 ∈ Mnd → 0 ∈ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
| 11 | 10 | ad2antrr 726 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) ∧ 𝑘 ∈ 𝐴) → 0 ∈ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
| 12 | 11 | fmpttd 7049 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝑘 ∈ 𝐴 ↦ 0 ):𝐴⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
| 13 | 1, 2, 3, 4, 5, 6, 12 | gsumval1 18557 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3394 {csn 4577 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Σg cgsu 17344 Mndcmnd 18608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-seq 13909 df-0g 17345 df-gsum 17346 df-mgm 18514 df-sgrp 18593 df-mnd 18609 |
| This theorem is referenced by: gsumval3 19786 gsumzres 19788 gsumzcl2 19789 gsumzf1o 19791 gsumzaddlem 19800 gsumzmhm 19816 gsumzoppg 19823 gsum2d 19851 dprdfeq0 19903 dprddisj2 19920 freshmansdream 21481 mplsubrglem 21911 evlslem1 21987 mhpsclcl 22032 mhpmulcl 22034 coe1tmmul2 22160 coe1tmmul 22161 cply1mul 22181 gsummoncoe1 22193 dmatmul 22382 smadiadetlem1a 22548 cpmatmcllem 22603 mp2pm2mplem4 22694 chfacfscmulgsum 22745 chfacfpmmulgsum 22749 tsms0 24027 tgptsmscls 24035 tdeglem4 25963 mdegmullem 25981 dchrptlem3 27175 gsummptres 33005 gsummptres2 33006 gsumfs2d 33008 elrgspnlem1 33182 elrgspnsubrunlem2 33188 elrspunidl 33365 rprmdvdsprod 33471 evl1deg1 33511 evl1deg2 33512 evl1deg3 33513 lbsdiflsp0 33593 fedgmullem2 33597 extdgfialglem2 33660 esum0 34016 ply1mulgsumlem2 48372 lincvalsc0 48406 linc0scn0 48408 |
| Copyright terms: Public domain | W3C validator |