![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumz | Structured version Visualization version GIF version |
Description: Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
gsumz.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
gsumz | ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . 2 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | gsumz.z | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2731 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | eqid 2731 | . 2 ⊢ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} = {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} | |
5 | simpl 482 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ Mnd) | |
6 | simpr 484 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
7 | 2 | fvexi 6905 | . . . . . 6 ⊢ 0 ∈ V |
8 | 7 | snid 4664 | . . . . 5 ⊢ 0 ∈ { 0 } |
9 | 1, 2, 3, 4 | gsumvallem2 18754 | . . . . 5 ⊢ (𝐺 ∈ Mnd → {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} = { 0 }) |
10 | 8, 9 | eleqtrrid 2839 | . . . 4 ⊢ (𝐺 ∈ Mnd → 0 ∈ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
11 | 10 | ad2antrr 723 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) ∧ 𝑘 ∈ 𝐴) → 0 ∈ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
12 | 11 | fmpttd 7116 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝑘 ∈ 𝐴 ↦ 0 ):𝐴⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
13 | 1, 2, 3, 4, 5, 6, 12 | gsumval1 18611 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 {crab 3431 {csn 4628 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 +gcplusg 17204 0gc0g 17392 Σg cgsu 17393 Mndcmnd 18662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-seq 13974 df-0g 17394 df-gsum 17395 df-mgm 18568 df-sgrp 18647 df-mnd 18663 |
This theorem is referenced by: gsumval3 19820 gsumzres 19822 gsumzcl2 19823 gsumzf1o 19825 gsumzaddlem 19834 gsumzmhm 19850 gsumzoppg 19857 gsum2d 19885 dprdfeq0 19937 dprddisj2 19954 mplsubrglem 21787 evlslem1 21869 mhpsclcl 21912 mhpmulcl 21914 coe1tmmul2 22031 coe1tmmul 22032 cply1mul 22051 gsummoncoe1 22061 dmatmul 22232 smadiadetlem1a 22398 cpmatmcllem 22453 mp2pm2mplem4 22544 chfacfscmulgsum 22595 chfacfpmmulgsum 22599 tsms0 23879 tgptsmscls 23887 tdeglem4 25826 tdeglem4OLD 25827 mdegmullem 25845 dchrptlem3 27020 gsummptres 32489 gsummptres2 32490 freshmansdream 32666 elrspunidl 32835 lbsdiflsp0 33014 fedgmullem2 33018 esum0 33360 ply1mulgsumlem2 47168 lincvalsc0 47202 linc0scn0 47204 |
Copyright terms: Public domain | W3C validator |