MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumz Structured version   Visualization version   GIF version

Theorem gsumz 18763
Description: Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypothesis
Ref Expression
gsumz.z 0 = (0g𝐺)
Assertion
Ref Expression
gsumz ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐺   𝑘,𝑉
Allowed substitution hint:   0 (𝑘)

Proof of Theorem gsumz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (Base‘𝐺) = (Base‘𝐺)
2 gsumz.z . 2 0 = (0g𝐺)
3 eqid 2729 . 2 (+g𝐺) = (+g𝐺)
4 eqid 2729 . 2 {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)} = {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)}
5 simpl 482 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → 𝐺 ∈ Mnd)
6 simpr 484 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → 𝐴𝑉)
72fvexi 6872 . . . . . 6 0 ∈ V
87snid 4626 . . . . 5 0 ∈ { 0 }
91, 2, 3, 4gsumvallem2 18761 . . . . 5 (𝐺 ∈ Mnd → {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)} = { 0 })
108, 9eleqtrrid 2835 . . . 4 (𝐺 ∈ Mnd → 0 ∈ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)})
1110ad2antrr 726 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑉) ∧ 𝑘𝐴) → 0 ∈ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)})
1211fmpttd 7087 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝑘𝐴0 ):𝐴⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)})
131, 2, 3, 4, 5, 6, 12gsumval1 18610 1 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  {csn 4589  cmpt 5188  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seq 13967  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662
This theorem is referenced by:  gsumval3  19837  gsumzres  19839  gsumzcl2  19840  gsumzf1o  19842  gsumzaddlem  19851  gsumzmhm  19867  gsumzoppg  19874  gsum2d  19902  dprdfeq0  19954  dprddisj2  19971  freshmansdream  21484  mplsubrglem  21913  evlslem1  21989  mhpsclcl  22034  mhpmulcl  22036  coe1tmmul2  22162  coe1tmmul  22163  cply1mul  22183  gsummoncoe1  22195  dmatmul  22384  smadiadetlem1a  22550  cpmatmcllem  22605  mp2pm2mplem4  22696  chfacfscmulgsum  22747  chfacfpmmulgsum  22751  tsms0  24029  tgptsmscls  24037  tdeglem4  25965  mdegmullem  25983  dchrptlem3  27177  gsummptres  32992  gsummptres2  32993  gsumfs2d  32995  elrgspnlem1  33193  elrgspnsubrunlem2  33199  elrspunidl  33399  rprmdvdsprod  33505  evl1deg1  33545  evl1deg2  33546  evl1deg3  33547  lbsdiflsp0  33622  fedgmullem2  33626  esum0  34039  ply1mulgsumlem2  48373  lincvalsc0  48407  linc0scn0  48409
  Copyright terms: Public domain W3C validator