![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumz | Structured version Visualization version GIF version |
Description: Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
gsumz.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
gsumz | ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . 2 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | gsumz.z | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2732 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | eqid 2732 | . 2 ⊢ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} = {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} | |
5 | simpl 483 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ Mnd) | |
6 | simpr 485 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
7 | 2 | fvexi 6902 | . . . . . 6 ⊢ 0 ∈ V |
8 | 7 | snid 4663 | . . . . 5 ⊢ 0 ∈ { 0 } |
9 | 1, 2, 3, 4 | gsumvallem2 18711 | . . . . 5 ⊢ (𝐺 ∈ Mnd → {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} = { 0 }) |
10 | 8, 9 | eleqtrrid 2840 | . . . 4 ⊢ (𝐺 ∈ Mnd → 0 ∈ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
11 | 10 | ad2antrr 724 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) ∧ 𝑘 ∈ 𝐴) → 0 ∈ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
12 | 11 | fmpttd 7111 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝑘 ∈ 𝐴 ↦ 0 ):𝐴⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
13 | 1, 2, 3, 4, 5, 6, 12 | gsumval1 18598 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 {crab 3432 {csn 4627 ↦ cmpt 5230 ‘cfv 6540 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 0gc0g 17381 Σg cgsu 17382 Mndcmnd 18621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-seq 13963 df-0g 17383 df-gsum 17384 df-mgm 18557 df-sgrp 18606 df-mnd 18622 |
This theorem is referenced by: gsumval3 19769 gsumzres 19771 gsumzcl2 19772 gsumzf1o 19774 gsumzaddlem 19783 gsumzmhm 19799 gsumzoppg 19806 gsum2d 19834 dprdfeq0 19886 dprddisj2 19903 mplsubrglem 21554 evlslem1 21636 mhpsclcl 21681 mhpmulcl 21683 coe1tmmul2 21789 coe1tmmul 21790 cply1mul 21809 gsummoncoe1 21819 dmatmul 21990 smadiadetlem1a 22156 cpmatmcllem 22211 mp2pm2mplem4 22302 chfacfscmulgsum 22353 chfacfpmmulgsum 22357 tsms0 23637 tgptsmscls 23645 tdeglem4 25568 tdeglem4OLD 25569 mdegmullem 25587 dchrptlem3 26758 gsummptres 32191 gsummptres2 32192 freshmansdream 32369 elrspunidl 32534 lbsdiflsp0 32699 fedgmullem2 32703 esum0 33035 ply1mulgsumlem2 47021 lincvalsc0 47055 linc0scn0 47057 |
Copyright terms: Public domain | W3C validator |