| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumz | Structured version Visualization version GIF version | ||
| Description: Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsumz.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| gsumz | ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . 2 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | gsumz.z | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2736 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | eqid 2736 | . 2 ⊢ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} = {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} | |
| 5 | simpl 482 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ Mnd) | |
| 6 | simpr 484 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 7 | 2 | fvexi 6895 | . . . . . 6 ⊢ 0 ∈ V |
| 8 | 7 | snid 4643 | . . . . 5 ⊢ 0 ∈ { 0 } |
| 9 | 1, 2, 3, 4 | gsumvallem2 18817 | . . . . 5 ⊢ (𝐺 ∈ Mnd → {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} = { 0 }) |
| 10 | 8, 9 | eleqtrrid 2842 | . . . 4 ⊢ (𝐺 ∈ Mnd → 0 ∈ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
| 11 | 10 | ad2antrr 726 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) ∧ 𝑘 ∈ 𝐴) → 0 ∈ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
| 12 | 11 | fmpttd 7110 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝑘 ∈ 𝐴 ↦ 0 ):𝐴⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
| 13 | 1, 2, 3, 4, 5, 6, 12 | gsumval1 18666 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 {csn 4606 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 0gc0g 17458 Σg cgsu 17459 Mndcmnd 18717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-seq 14025 df-0g 17460 df-gsum 17461 df-mgm 18623 df-sgrp 18702 df-mnd 18718 |
| This theorem is referenced by: gsumval3 19893 gsumzres 19895 gsumzcl2 19896 gsumzf1o 19898 gsumzaddlem 19907 gsumzmhm 19923 gsumzoppg 19930 gsum2d 19958 dprdfeq0 20010 dprddisj2 20027 freshmansdream 21540 mplsubrglem 21969 evlslem1 22045 mhpsclcl 22090 mhpmulcl 22092 coe1tmmul2 22218 coe1tmmul 22219 cply1mul 22239 gsummoncoe1 22251 dmatmul 22440 smadiadetlem1a 22606 cpmatmcllem 22661 mp2pm2mplem4 22752 chfacfscmulgsum 22803 chfacfpmmulgsum 22807 tsms0 24085 tgptsmscls 24093 tdeglem4 26022 mdegmullem 26040 dchrptlem3 27234 gsummptres 33051 gsummptres2 33052 gsumfs2d 33054 elrgspnlem1 33242 elrgspnsubrunlem2 33248 elrspunidl 33448 rprmdvdsprod 33554 evl1deg1 33594 evl1deg2 33595 evl1deg3 33596 lbsdiflsp0 33671 fedgmullem2 33675 esum0 34085 ply1mulgsumlem2 48330 lincvalsc0 48364 linc0scn0 48366 |
| Copyright terms: Public domain | W3C validator |