| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmeocnvb | Structured version Visualization version GIF version | ||
| Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmeocnvb | ⊢ (Rel 𝐹 → (◡𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocnv 23716 | . . 3 ⊢ (◡𝐹 ∈ (𝐽Homeo𝐾) → ◡◡𝐹 ∈ (𝐾Homeo𝐽)) | |
| 2 | dfrel2 6189 | . . . 4 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 3 | eleq1 2821 | . . . 4 ⊢ (◡◡𝐹 = 𝐹 → (◡◡𝐹 ∈ (𝐾Homeo𝐽) ↔ 𝐹 ∈ (𝐾Homeo𝐽))) | |
| 4 | 2, 3 | sylbi 217 | . . 3 ⊢ (Rel 𝐹 → (◡◡𝐹 ∈ (𝐾Homeo𝐽) ↔ 𝐹 ∈ (𝐾Homeo𝐽))) |
| 5 | 1, 4 | imbitrid 244 | . 2 ⊢ (Rel 𝐹 → (◡𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽))) |
| 6 | hmeocnv 23716 | . 2 ⊢ (𝐹 ∈ (𝐾Homeo𝐽) → ◡𝐹 ∈ (𝐽Homeo𝐾)) | |
| 7 | 5, 6 | impbid1 225 | 1 ⊢ (Rel 𝐹 → (◡𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ◡ccnv 5664 Rel wrel 5670 (class class class)co 7413 Homeochmeo 23707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-map 8850 df-top 22848 df-topon 22865 df-cn 23181 df-hmeo 23709 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |