![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmeocnvb | Structured version Visualization version GIF version |
Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
hmeocnvb | ⊢ (Rel 𝐹 → (◡𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocnv 23587 | . . 3 ⊢ (◡𝐹 ∈ (𝐽Homeo𝐾) → ◡◡𝐹 ∈ (𝐾Homeo𝐽)) | |
2 | dfrel2 6178 | . . . 4 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
3 | eleq1 2813 | . . . 4 ⊢ (◡◡𝐹 = 𝐹 → (◡◡𝐹 ∈ (𝐾Homeo𝐽) ↔ 𝐹 ∈ (𝐾Homeo𝐽))) | |
4 | 2, 3 | sylbi 216 | . . 3 ⊢ (Rel 𝐹 → (◡◡𝐹 ∈ (𝐾Homeo𝐽) ↔ 𝐹 ∈ (𝐾Homeo𝐽))) |
5 | 1, 4 | imbitrid 243 | . 2 ⊢ (Rel 𝐹 → (◡𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽))) |
6 | hmeocnv 23587 | . 2 ⊢ (𝐹 ∈ (𝐾Homeo𝐽) → ◡𝐹 ∈ (𝐽Homeo𝐾)) | |
7 | 5, 6 | impbid1 224 | 1 ⊢ (Rel 𝐹 → (◡𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ◡ccnv 5665 Rel wrel 5671 (class class class)co 7401 Homeochmeo 23578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-map 8817 df-top 22717 df-topon 22734 df-cn 23052 df-hmeo 23580 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |