MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeocnvb Structured version   Visualization version   GIF version

Theorem hmeocnvb 23807
Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmeocnvb (Rel 𝐹 → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽)))

Proof of Theorem hmeocnvb
StepHypRef Expression
1 hmeocnv 23795 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽))
2 dfrel2 6217 . . . 4 (Rel 𝐹𝐹 = 𝐹)
3 eleq1 2829 . . . 4 (𝐹 = 𝐹 → (𝐹 ∈ (𝐾Homeo𝐽) ↔ 𝐹 ∈ (𝐾Homeo𝐽)))
42, 3sylbi 217 . . 3 (Rel 𝐹 → (𝐹 ∈ (𝐾Homeo𝐽) ↔ 𝐹 ∈ (𝐾Homeo𝐽)))
51, 4imbitrid 244 . 2 (Rel 𝐹 → (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽)))
6 hmeocnv 23795 . 2 (𝐹 ∈ (𝐾Homeo𝐽) → 𝐹 ∈ (𝐽Homeo𝐾))
75, 6impbid1 225 1 (Rel 𝐹 → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2108  ccnv 5692  Rel wrel 5698  (class class class)co 7438  Homeochmeo 23786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-map 8876  df-top 22925  df-topon 22942  df-cn 23260  df-hmeo 23788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator