MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeocnvb Structured version   Visualization version   GIF version

Theorem hmeocnvb 22833
Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmeocnvb (Rel 𝐹 → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽)))

Proof of Theorem hmeocnvb
StepHypRef Expression
1 hmeocnv 22821 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽))
2 dfrel2 6081 . . . 4 (Rel 𝐹𝐹 = 𝐹)
3 eleq1 2826 . . . 4 (𝐹 = 𝐹 → (𝐹 ∈ (𝐾Homeo𝐽) ↔ 𝐹 ∈ (𝐾Homeo𝐽)))
42, 3sylbi 216 . . 3 (Rel 𝐹 → (𝐹 ∈ (𝐾Homeo𝐽) ↔ 𝐹 ∈ (𝐾Homeo𝐽)))
51, 4syl5ib 243 . 2 (Rel 𝐹 → (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽)))
6 hmeocnv 22821 . 2 (𝐹 ∈ (𝐾Homeo𝐽) → 𝐹 ∈ (𝐽Homeo𝐾))
75, 6impbid1 224 1 (Rel 𝐹 → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  ccnv 5579  Rel wrel 5585  (class class class)co 7255  Homeochmeo 22812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-top 21951  df-topon 21968  df-cn 22286  df-hmeo 22814
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator