MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeoqtop Structured version   Visualization version   GIF version

Theorem hmeoqtop 23783
Description: A homeomorphism is a quotient map. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
hmeoqtop (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 = (𝐽 qTop 𝐹))

Proof of Theorem hmeoqtop
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hmeocn 23768 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
2 cntop2 23249 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
31, 2syl 17 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 ∈ Top)
4 toptopon2 22924 . . 3 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
53, 4sylib 218 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 ∈ (TopOn‘ 𝐾))
6 eqid 2737 . . . 4 𝐽 = 𝐽
7 eqid 2737 . . . 4 𝐾 = 𝐾
86, 7hmeof1o 23772 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹: 𝐽1-1-onto 𝐾)
9 f1ofo 6855 . . 3 (𝐹: 𝐽1-1-onto 𝐾𝐹: 𝐽onto 𝐾)
10 forn 6823 . . 3 (𝐹: 𝐽onto 𝐾 → ran 𝐹 = 𝐾)
118, 9, 103syl 18 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → ran 𝐹 = 𝐾)
12 hmeoima 23773 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
135, 1, 11, 12qtopomap 23726 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108   cuni 4907  ran crn 5686  ontowfo 6559  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431   qTop cqtop 17548  Topctop 22899  TopOnctopon 22916   Cn ccn 23232  Homeochmeo 23761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-qtop 17552  df-top 22900  df-topon 22917  df-cn 23235  df-hmeo 23763
This theorem is referenced by:  xpstopnlem2  23819
  Copyright terms: Public domain W3C validator