![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmeoqtop | Structured version Visualization version GIF version |
Description: A homeomorphism is a quotient map. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
hmeoqtop | β’ (πΉ β (π½HomeoπΎ) β πΎ = (π½ qTop πΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocn 23485 | . . . 4 β’ (πΉ β (π½HomeoπΎ) β πΉ β (π½ Cn πΎ)) | |
2 | cntop2 22966 | . . . 4 β’ (πΉ β (π½ Cn πΎ) β πΎ β Top) | |
3 | 1, 2 | syl 17 | . . 3 β’ (πΉ β (π½HomeoπΎ) β πΎ β Top) |
4 | toptopon2 22641 | . . 3 β’ (πΎ β Top β πΎ β (TopOnββͺ πΎ)) | |
5 | 3, 4 | sylib 217 | . 2 β’ (πΉ β (π½HomeoπΎ) β πΎ β (TopOnββͺ πΎ)) |
6 | eqid 2731 | . . . 4 β’ βͺ π½ = βͺ π½ | |
7 | eqid 2731 | . . . 4 β’ βͺ πΎ = βͺ πΎ | |
8 | 6, 7 | hmeof1o 23489 | . . 3 β’ (πΉ β (π½HomeoπΎ) β πΉ:βͺ π½β1-1-ontoββͺ πΎ) |
9 | f1ofo 6840 | . . 3 β’ (πΉ:βͺ π½β1-1-ontoββͺ πΎ β πΉ:βͺ π½βontoββͺ πΎ) | |
10 | forn 6808 | . . 3 β’ (πΉ:βͺ π½βontoββͺ πΎ β ran πΉ = βͺ πΎ) | |
11 | 8, 9, 10 | 3syl 18 | . 2 β’ (πΉ β (π½HomeoπΎ) β ran πΉ = βͺ πΎ) |
12 | hmeoima 23490 | . 2 β’ ((πΉ β (π½HomeoπΎ) β§ π₯ β π½) β (πΉ β π₯) β πΎ) | |
13 | 5, 1, 11, 12 | qtopomap 23443 | 1 β’ (πΉ β (π½HomeoπΎ) β πΎ = (π½ qTop πΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 βͺ cuni 4908 ran crn 5677 βontoβwfo 6541 β1-1-ontoβwf1o 6542 βcfv 6543 (class class class)co 7412 qTop cqtop 17454 Topctop 22616 TopOnctopon 22633 Cn ccn 22949 Homeochmeo 23478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8826 df-qtop 17458 df-top 22617 df-topon 22634 df-cn 22952 df-hmeo 23480 |
This theorem is referenced by: xpstopnlem2 23536 |
Copyright terms: Public domain | W3C validator |