MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeoqtop Structured version   Visualization version   GIF version

Theorem hmeoqtop 23690
Description: A homeomorphism is a quotient map. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
hmeoqtop (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 = (𝐽 qTop 𝐹))

Proof of Theorem hmeoqtop
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hmeocn 23675 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
2 cntop2 23156 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
31, 2syl 17 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 ∈ Top)
4 toptopon2 22833 . . 3 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
53, 4sylib 218 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 ∈ (TopOn‘ 𝐾))
6 eqid 2731 . . . 4 𝐽 = 𝐽
7 eqid 2731 . . . 4 𝐾 = 𝐾
86, 7hmeof1o 23679 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹: 𝐽1-1-onto 𝐾)
9 f1ofo 6770 . . 3 (𝐹: 𝐽1-1-onto 𝐾𝐹: 𝐽onto 𝐾)
10 forn 6738 . . 3 (𝐹: 𝐽onto 𝐾 → ran 𝐹 = 𝐾)
118, 9, 103syl 18 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → ran 𝐹 = 𝐾)
12 hmeoima 23680 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
135, 1, 11, 12qtopomap 23633 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   cuni 4856  ran crn 5615  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346   qTop cqtop 17407  Topctop 22808  TopOnctopon 22825   Cn ccn 23139  Homeochmeo 23668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-qtop 17411  df-top 22809  df-topon 22826  df-cn 23142  df-hmeo 23670
This theorem is referenced by:  xpstopnlem2  23726
  Copyright terms: Public domain W3C validator