Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hmeoqtop | Structured version Visualization version GIF version |
Description: A homeomorphism is a quotient map. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
hmeoqtop | ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 = (𝐽 qTop 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocn 22473 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
2 | cntop2 21954 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 ∈ Top) |
4 | toptopon2 21631 | . . 3 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
5 | 3, 4 | sylib 221 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
6 | eqid 2758 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
7 | eqid 2758 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
8 | 6, 7 | hmeof1o 22477 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:∪ 𝐽–1-1-onto→∪ 𝐾) |
9 | f1ofo 6614 | . . 3 ⊢ (𝐹:∪ 𝐽–1-1-onto→∪ 𝐾 → 𝐹:∪ 𝐽–onto→∪ 𝐾) | |
10 | forn 6584 | . . 3 ⊢ (𝐹:∪ 𝐽–onto→∪ 𝐾 → ran 𝐹 = ∪ 𝐾) | |
11 | 8, 9, 10 | 3syl 18 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ran 𝐹 = ∪ 𝐾) |
12 | hmeoima 22478 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐾) | |
13 | 5, 1, 11, 12 | qtopomap 22431 | 1 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 = (𝐽 qTop 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ∪ cuni 4801 ran crn 5529 –onto→wfo 6338 –1-1-onto→wf1o 6339 ‘cfv 6340 (class class class)co 7156 qTop cqtop 16847 Topctop 21606 TopOnctopon 21623 Cn ccn 21937 Homeochmeo 22466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-map 8424 df-qtop 16851 df-top 21607 df-topon 21624 df-cn 21940 df-hmeo 22468 |
This theorem is referenced by: xpstopnlem2 22524 |
Copyright terms: Public domain | W3C validator |