![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmeoqtop | Structured version Visualization version GIF version |
Description: A homeomorphism is a quotient map. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
hmeoqtop | ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 = (𝐽 qTop 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocn 23789 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
2 | cntop2 23270 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 ∈ Top) |
4 | toptopon2 22945 | . . 3 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
5 | 3, 4 | sylib 218 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
6 | eqid 2740 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
7 | eqid 2740 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
8 | 6, 7 | hmeof1o 23793 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:∪ 𝐽–1-1-onto→∪ 𝐾) |
9 | f1ofo 6869 | . . 3 ⊢ (𝐹:∪ 𝐽–1-1-onto→∪ 𝐾 → 𝐹:∪ 𝐽–onto→∪ 𝐾) | |
10 | forn 6837 | . . 3 ⊢ (𝐹:∪ 𝐽–onto→∪ 𝐾 → ran 𝐹 = ∪ 𝐾) | |
11 | 8, 9, 10 | 3syl 18 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ran 𝐹 = ∪ 𝐾) |
12 | hmeoima 23794 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐾) | |
13 | 5, 1, 11, 12 | qtopomap 23747 | 1 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 = (𝐽 qTop 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∪ cuni 4931 ran crn 5701 –onto→wfo 6571 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 qTop cqtop 17563 Topctop 22920 TopOnctopon 22937 Cn ccn 23253 Homeochmeo 23782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-qtop 17567 df-top 22921 df-topon 22938 df-cn 23256 df-hmeo 23784 |
This theorem is referenced by: xpstopnlem2 23840 |
Copyright terms: Public domain | W3C validator |