MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeoqtop Structured version   Visualization version   GIF version

Theorem hmeoqtop 23713
Description: A homeomorphism is a quotient map. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
hmeoqtop (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 = (𝐽 qTop 𝐹))

Proof of Theorem hmeoqtop
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hmeocn 23698 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
2 cntop2 23179 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
31, 2syl 17 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 ∈ Top)
4 toptopon2 22856 . . 3 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
53, 4sylib 218 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 ∈ (TopOn‘ 𝐾))
6 eqid 2735 . . . 4 𝐽 = 𝐽
7 eqid 2735 . . . 4 𝐾 = 𝐾
86, 7hmeof1o 23702 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹: 𝐽1-1-onto 𝐾)
9 f1ofo 6825 . . 3 (𝐹: 𝐽1-1-onto 𝐾𝐹: 𝐽onto 𝐾)
10 forn 6793 . . 3 (𝐹: 𝐽onto 𝐾 → ran 𝐹 = 𝐾)
118, 9, 103syl 18 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → ran 𝐹 = 𝐾)
12 hmeoima 23703 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
135, 1, 11, 12qtopomap 23656 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐾 = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108   cuni 4883  ran crn 5655  ontowfo 6529  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405   qTop cqtop 17517  Topctop 22831  TopOnctopon 22848   Cn ccn 23162  Homeochmeo 23691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-qtop 17521  df-top 22832  df-topon 22849  df-cn 23165  df-hmeo 23693
This theorem is referenced by:  xpstopnlem2  23749
  Copyright terms: Public domain W3C validator