MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idhmeo Structured version   Visualization version   GIF version

Theorem idhmeo 23660
Description: The identity function is a homeomorphism. (Contributed by FL, 14-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
idhmeo (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽Homeo𝐽))

Proof of Theorem idhmeo
StepHypRef Expression
1 idcn 23144 . 2 (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
2 cnvresid 6595 . . 3 ( I ↾ 𝑋) = ( I ↾ 𝑋)
32, 1eqeltrid 2832 . 2 (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
4 ishmeo 23646 . 2 (( I ↾ 𝑋) ∈ (𝐽Homeo𝐽) ↔ (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽) ∧ ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)))
51, 3, 4sylanbrc 583 1 (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽Homeo𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   I cid 5532  ccnv 5637  cres 5640  cfv 6511  (class class class)co 7387  TopOnctopon 22797   Cn ccn 23111  Homeochmeo 23640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-top 22781  df-topon 22798  df-cn 23114  df-hmeo 23642
This theorem is referenced by:  hmphref  23668
  Copyright terms: Public domain W3C validator