HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoeq Structured version   Visualization version   GIF version

Theorem hoeq 30023
Description: Equality of Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoeq ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑈𝑥) ↔ 𝑇 = 𝑈))
Distinct variable groups:   𝑥,𝑇   𝑥,𝑈

Proof of Theorem hoeq
StepHypRef Expression
1 ffn 6584 . 2 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
2 ffn 6584 . 2 (𝑈: ℋ⟶ ℋ → 𝑈 Fn ℋ)
3 eqfnfv 6891 . . 3 ((𝑇 Fn ℋ ∧ 𝑈 Fn ℋ) → (𝑇 = 𝑈 ↔ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑈𝑥)))
43bicomd 222 . 2 ((𝑇 Fn ℋ ∧ 𝑈 Fn ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑈𝑥) ↔ 𝑇 = 𝑈))
51, 2, 4syl2an 595 1 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑈𝑥) ↔ 𝑇 = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wral 3063   Fn wfn 6413  wf 6414  cfv 6418  chba 29182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by:  hoeqi  30024  homulid2  30063  homco1  30064  homulass  30065  hoadddi  30066  hoadddir  30067  homco2  30240
  Copyright terms: Public domain W3C validator