HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoeq Structured version   Visualization version   GIF version

Theorem hoeq 31739
Description: Equality of Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoeq ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑈𝑥) ↔ 𝑇 = 𝑈))
Distinct variable groups:   𝑥,𝑇   𝑥,𝑈

Proof of Theorem hoeq
StepHypRef Expression
1 ffn 6670 . 2 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
2 ffn 6670 . 2 (𝑈: ℋ⟶ ℋ → 𝑈 Fn ℋ)
3 eqfnfv 6985 . . 3 ((𝑇 Fn ℋ ∧ 𝑈 Fn ℋ) → (𝑇 = 𝑈 ↔ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑈𝑥)))
43bicomd 223 . 2 ((𝑇 Fn ℋ ∧ 𝑈 Fn ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑈𝑥) ↔ 𝑇 = 𝑈))
51, 2, 4syl2an 596 1 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑈𝑥) ↔ 𝑇 = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wral 3044   Fn wfn 6494  wf 6495  cfv 6499  chba 30898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507
This theorem is referenced by:  hoeqi  31740  homullid  31779  homco1  31780  homulass  31781  hoadddi  31782  hoadddir  31783  homco2  31956
  Copyright terms: Public domain W3C validator