| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hoeq | Structured version Visualization version GIF version | ||
| Description: Equality of Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hoeq | ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑈‘𝑥) ↔ 𝑇 = 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6651 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ) | |
| 2 | ffn 6651 | . 2 ⊢ (𝑈: ℋ⟶ ℋ → 𝑈 Fn ℋ) | |
| 3 | eqfnfv 6964 | . . 3 ⊢ ((𝑇 Fn ℋ ∧ 𝑈 Fn ℋ) → (𝑇 = 𝑈 ↔ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑈‘𝑥))) | |
| 4 | 3 | bicomd 223 | . 2 ⊢ ((𝑇 Fn ℋ ∧ 𝑈 Fn ℋ) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑈‘𝑥) ↔ 𝑇 = 𝑈)) |
| 5 | 1, 2, 4 | syl2an 596 | 1 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑈‘𝑥) ↔ 𝑇 = 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∀wral 3047 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 ℋchba 30899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 |
| This theorem is referenced by: hoeqi 31741 homullid 31780 homco1 31781 homulass 31782 hoadddi 31783 hoadddir 31784 homco2 31957 |
| Copyright terms: Public domain | W3C validator |