HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoeq Structured version   Visualization version   GIF version

Theorem hoeq 31590
Description: Equality of Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoeq ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑈𝑥) ↔ 𝑇 = 𝑈))
Distinct variable groups:   𝑥,𝑇   𝑥,𝑈

Proof of Theorem hoeq
StepHypRef Expression
1 ffn 6727 . 2 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
2 ffn 6727 . 2 (𝑈: ℋ⟶ ℋ → 𝑈 Fn ℋ)
3 eqfnfv 7045 . . 3 ((𝑇 Fn ℋ ∧ 𝑈 Fn ℋ) → (𝑇 = 𝑈 ↔ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑈𝑥)))
43bicomd 222 . 2 ((𝑇 Fn ℋ ∧ 𝑈 Fn ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑈𝑥) ↔ 𝑇 = 𝑈))
51, 2, 4syl2an 594 1 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑈𝑥) ↔ 𝑇 = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wral 3058   Fn wfn 6548  wf 6549  cfv 6553  chba 30749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561
This theorem is referenced by:  hoeqi  31591  homullid  31630  homco1  31631  homulass  31632  hoadddi  31633  hoadddir  31634  homco2  31807
  Copyright terms: Public domain W3C validator