HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoeq Structured version   Visualization version   GIF version

Theorem hoeq 31696
Description: Equality of Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoeq ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑈𝑥) ↔ 𝑇 = 𝑈))
Distinct variable groups:   𝑥,𝑇   𝑥,𝑈

Proof of Theorem hoeq
StepHypRef Expression
1 ffn 6691 . 2 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
2 ffn 6691 . 2 (𝑈: ℋ⟶ ℋ → 𝑈 Fn ℋ)
3 eqfnfv 7006 . . 3 ((𝑇 Fn ℋ ∧ 𝑈 Fn ℋ) → (𝑇 = 𝑈 ↔ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑈𝑥)))
43bicomd 223 . 2 ((𝑇 Fn ℋ ∧ 𝑈 Fn ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑈𝑥) ↔ 𝑇 = 𝑈))
51, 2, 4syl2an 596 1 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑈𝑥) ↔ 𝑇 = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wral 3045   Fn wfn 6509  wf 6510  cfv 6514  chba 30855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522
This theorem is referenced by:  hoeqi  31697  homullid  31736  homco1  31737  homulass  31738  hoadddi  31739  hoadddir  31740  homco2  31913
  Copyright terms: Public domain W3C validator