| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hoeq | Structured version Visualization version GIF version | ||
| Description: Equality of Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hoeq | ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑈‘𝑥) ↔ 𝑇 = 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6706 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ) | |
| 2 | ffn 6706 | . 2 ⊢ (𝑈: ℋ⟶ ℋ → 𝑈 Fn ℋ) | |
| 3 | eqfnfv 7021 | . . 3 ⊢ ((𝑇 Fn ℋ ∧ 𝑈 Fn ℋ) → (𝑇 = 𝑈 ↔ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑈‘𝑥))) | |
| 4 | 3 | bicomd 223 | . 2 ⊢ ((𝑇 Fn ℋ ∧ 𝑈 Fn ℋ) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑈‘𝑥) ↔ 𝑇 = 𝑈)) |
| 5 | 1, 2, 4 | syl2an 596 | 1 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑈‘𝑥) ↔ 𝑇 = 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3051 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 ℋchba 30900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 |
| This theorem is referenced by: hoeqi 31742 homullid 31781 homco1 31782 homulass 31783 hoadddi 31784 hoadddir 31785 homco2 31958 |
| Copyright terms: Public domain | W3C validator |