HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homulcl Structured version   Visualization version   GIF version

Theorem homulcl 31791
Description: The scalar product of a Hilbert space operator is an operator. (Contributed by NM, 21-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
homulcl ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)

Proof of Theorem homulcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffvelcdm 7115 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
2 hvmulcl 31045 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (𝐴 · (𝑇𝑥)) ∈ ℋ)
31, 2sylan2 592 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝐴 · (𝑇𝑥)) ∈ ℋ)
43anassrs 467 . . 3 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · (𝑇𝑥)) ∈ ℋ)
54fmpttd 7149 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))): ℋ⟶ ℋ)
6 hommval 31768 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
76feq1d 6732 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ↔ (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))): ℋ⟶ ℋ))
85, 7mpbird 257 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  chba 30951   · csm 30953   ·op chot 30971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-hilex 31031  ax-hfvmul 31037
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-homul 31763
This theorem is referenced by:  honegsubi  31828  homullid  31832  homco1  31833  homulass  31834  hoadddi  31835  hoadddir  31836  hosubneg  31839  hosubdi  31840  honegsubdi  31842  honegsubdi2  31843  hosub4  31845  hosubsub4  31850  hosubeq0i  31858  nmopnegi  31997  homco2  32009  lnopmi  32032  hmopm  32053  nmophmi  32063  adjmul  32124  opsqrlem1  32172  opsqrlem6  32177
  Copyright terms: Public domain W3C validator