HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homulcl Structured version   Visualization version   GIF version

Theorem homulcl 31661
Description: The scalar product of a Hilbert space operator is an operator. (Contributed by NM, 21-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
homulcl ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)

Proof of Theorem homulcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffvelcdm 7035 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
2 hvmulcl 30915 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (𝐴 · (𝑇𝑥)) ∈ ℋ)
31, 2sylan2 593 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝐴 · (𝑇𝑥)) ∈ ℋ)
43anassrs 467 . . 3 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · (𝑇𝑥)) ∈ ℋ)
54fmpttd 7069 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))): ℋ⟶ ℋ)
6 hommval 31638 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
76feq1d 6652 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ↔ (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))): ℋ⟶ ℋ))
85, 7mpbird 257 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  chba 30821   · csm 30823   ·op chot 30841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-hilex 30901  ax-hfvmul 30907
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-homul 31633
This theorem is referenced by:  honegsubi  31698  homullid  31702  homco1  31703  homulass  31704  hoadddi  31705  hoadddir  31706  hosubneg  31709  hosubdi  31710  honegsubdi  31712  honegsubdi2  31713  hosub4  31715  hosubsub4  31720  hosubeq0i  31728  nmopnegi  31867  homco2  31879  lnopmi  31902  hmopm  31923  nmophmi  31933  adjmul  31994  opsqrlem1  32042  opsqrlem6  32047
  Copyright terms: Public domain W3C validator