![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > homulcl | Structured version Visualization version GIF version |
Description: The scalar product of a Hilbert space operator is an operator. (Contributed by NM, 21-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
homulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelcdm 7115 | . . . . 5 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) | |
2 | hvmulcl 31045 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℋ) → (𝐴 ·ℎ (𝑇‘𝑥)) ∈ ℋ) | |
3 | 1, 2 | sylan2 592 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝐴 ·ℎ (𝑇‘𝑥)) ∈ ℋ) |
4 | 3 | anassrs 467 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 ·ℎ (𝑇‘𝑥)) ∈ ℋ) |
5 | 4 | fmpttd 7149 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥))): ℋ⟶ ℋ) |
6 | hommval 31768 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))) | |
7 | 6 | feq1d 6732 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ↔ (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥))): ℋ⟶ ℋ)) |
8 | 5, 7 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℋchba 30951 ·ℎ csm 30953 ·op chot 30971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-hilex 31031 ax-hfvmul 31037 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-homul 31763 |
This theorem is referenced by: honegsubi 31828 homullid 31832 homco1 31833 homulass 31834 hoadddi 31835 hoadddir 31836 hosubneg 31839 hosubdi 31840 honegsubdi 31842 honegsubdi2 31843 hosub4 31845 hosubsub4 31850 hosubeq0i 31858 nmopnegi 31997 homco2 32009 lnopmi 32032 hmopm 32053 nmophmi 32063 adjmul 32124 opsqrlem1 32172 opsqrlem6 32177 |
Copyright terms: Public domain | W3C validator |