| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > homulcl | Structured version Visualization version GIF version | ||
| Description: The scalar product of a Hilbert space operator is an operator. (Contributed by NM, 21-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| homulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdm 7035 | . . . . 5 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) | |
| 2 | hvmulcl 30915 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℋ) → (𝐴 ·ℎ (𝑇‘𝑥)) ∈ ℋ) | |
| 3 | 1, 2 | sylan2 593 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝐴 ·ℎ (𝑇‘𝑥)) ∈ ℋ) |
| 4 | 3 | anassrs 467 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 ·ℎ (𝑇‘𝑥)) ∈ ℋ) |
| 5 | 4 | fmpttd 7069 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥))): ℋ⟶ ℋ) |
| 6 | hommval 31638 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))) | |
| 7 | 6 | feq1d 6652 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ↔ (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥))): ℋ⟶ ℋ)) |
| 8 | 5, 7 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ↦ cmpt 5183 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℋchba 30821 ·ℎ csm 30823 ·op chot 30841 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-hilex 30901 ax-hfvmul 30907 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-homul 31633 |
| This theorem is referenced by: honegsubi 31698 homullid 31702 homco1 31703 homulass 31704 hoadddi 31705 hoadddir 31706 hosubneg 31709 hosubdi 31710 honegsubdi 31712 honegsubdi2 31713 hosub4 31715 hosubsub4 31720 hosubeq0i 31728 nmopnegi 31867 homco2 31879 lnopmi 31902 hmopm 31923 nmophmi 31933 adjmul 31994 opsqrlem1 32042 opsqrlem6 32047 |
| Copyright terms: Public domain | W3C validator |