HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homulcl Structured version   Visualization version   GIF version

Theorem homulcl 30022
Description: The scalar product of a Hilbert space operator is an operator. (Contributed by NM, 21-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
homulcl ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)

Proof of Theorem homulcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffvelrn 6941 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
2 hvmulcl 29276 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (𝐴 · (𝑇𝑥)) ∈ ℋ)
31, 2sylan2 592 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝐴 · (𝑇𝑥)) ∈ ℋ)
43anassrs 467 . . 3 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · (𝑇𝑥)) ∈ ℋ)
54fmpttd 6971 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))): ℋ⟶ ℋ)
6 hommval 29999 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
76feq1d 6569 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ↔ (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))): ℋ⟶ ℋ))
85, 7mpbird 256 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  chba 29182   · csm 29184   ·op chot 29202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-hilex 29262  ax-hfvmul 29268
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-homul 29994
This theorem is referenced by:  honegsubi  30059  homulid2  30063  homco1  30064  homulass  30065  hoadddi  30066  hoadddir  30067  hosubneg  30070  hosubdi  30071  honegsubdi  30073  honegsubdi2  30074  hosub4  30076  hosubsub4  30081  hosubeq0i  30089  nmopnegi  30228  homco2  30240  lnopmi  30263  hmopm  30284  nmophmi  30294  adjmul  30355  opsqrlem1  30403  opsqrlem6  30408
  Copyright terms: Public domain W3C validator