|   | Hilbert Space Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > HSE Home > Th. List > homulcl | Structured version Visualization version GIF version | ||
| Description: The scalar product of a Hilbert space operator is an operator. (Contributed by NM, 21-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| homulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ffvelcdm 7101 | . . . . 5 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) | |
| 2 | hvmulcl 31032 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℋ) → (𝐴 ·ℎ (𝑇‘𝑥)) ∈ ℋ) | |
| 3 | 1, 2 | sylan2 593 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝐴 ·ℎ (𝑇‘𝑥)) ∈ ℋ) | 
| 4 | 3 | anassrs 467 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 ·ℎ (𝑇‘𝑥)) ∈ ℋ) | 
| 5 | 4 | fmpttd 7135 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥))): ℋ⟶ ℋ) | 
| 6 | hommval 31755 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))) | |
| 7 | 6 | feq1d 6720 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ↔ (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥))): ℋ⟶ ℋ)) | 
| 8 | 5, 7 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ↦ cmpt 5225 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℋchba 30938 ·ℎ csm 30940 ·op chot 30958 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-hilex 31018 ax-hfvmul 31024 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8868 df-homul 31750 | 
| This theorem is referenced by: honegsubi 31815 homullid 31819 homco1 31820 homulass 31821 hoadddi 31822 hoadddir 31823 hosubneg 31826 hosubdi 31827 honegsubdi 31829 honegsubdi2 31830 hosub4 31832 hosubsub4 31837 hosubeq0i 31845 nmopnegi 31984 homco2 31996 lnopmi 32019 hmopm 32040 nmophmi 32050 adjmul 32111 opsqrlem1 32159 opsqrlem6 32164 | 
| Copyright terms: Public domain | W3C validator |