HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homco2 Structured version   Visualization version   GIF version

Theorem homco2 30339
Description: Move a scalar product out of a composition of operators. The operator 𝑇 must be linear, unlike homco1 30163 that works for any operators. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
homco2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 ∘ (𝐴 ·op 𝑈)) = (𝐴 ·op (𝑇𝑈)))

Proof of Theorem homco2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1190 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℂ)
2 simpl3 1192 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑈: ℋ⟶ ℋ)
3 simpr 485 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
4 homval 30103 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑈)‘𝑥) = (𝐴 · (𝑈𝑥)))
51, 2, 3, 4syl3anc 1370 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑈)‘𝑥) = (𝐴 · (𝑈𝑥)))
65fveq2d 6778 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝐴 ·op 𝑈)‘𝑥)) = (𝑇‘(𝐴 · (𝑈𝑥))))
7 homulcl 30121 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op 𝑈): ℋ⟶ ℋ)
873adant2 1130 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op 𝑈): ℋ⟶ ℋ)
9 fvco3 6867 . . . . 5 (((𝐴 ·op 𝑈): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 ∘ (𝐴 ·op 𝑈))‘𝑥) = (𝑇‘((𝐴 ·op 𝑈)‘𝑥)))
108, 9sylan 580 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇 ∘ (𝐴 ·op 𝑈))‘𝑥) = (𝑇‘((𝐴 ·op 𝑈)‘𝑥)))
11 fvco3 6867 . . . . . . 7 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑈)‘𝑥) = (𝑇‘(𝑈𝑥)))
122, 3, 11syl2anc 584 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑈)‘𝑥) = (𝑇‘(𝑈𝑥)))
1312oveq2d 7291 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇𝑈)‘𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
14 lnopf 30221 . . . . . . . . 9 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
15143ad2ant2 1133 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → 𝑇: ℋ⟶ ℋ)
16 simp3 1137 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → 𝑈: ℋ⟶ ℋ)
17 fco 6624 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇𝑈): ℋ⟶ ℋ)
1815, 16, 17syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝑇𝑈): ℋ⟶ ℋ)
1918adantr 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇𝑈): ℋ⟶ ℋ)
20 homval 30103 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇𝑈): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
211, 19, 3, 20syl3anc 1370 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
22 simpl2 1191 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑇 ∈ LinOp)
2316ffvelrnda 6961 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
24 lnopmul 30329 . . . . . 6 ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ (𝑈𝑥) ∈ ℋ) → (𝑇‘(𝐴 · (𝑈𝑥))) = (𝐴 · (𝑇‘(𝑈𝑥))))
2522, 1, 23, 24syl3anc 1370 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝐴 · (𝑈𝑥))) = (𝐴 · (𝑇‘(𝑈𝑥))))
2613, 21, 253eqtr4d 2788 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝑇‘(𝐴 · (𝑈𝑥))))
276, 10, 263eqtr4d 2788 . . 3 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇 ∘ (𝐴 ·op 𝑈))‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥))
2827ralrimiva 3103 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ ((𝑇 ∘ (𝐴 ·op 𝑈))‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥))
29 fco 6624 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ) → (𝑇 ∘ (𝐴 ·op 𝑈)): ℋ⟶ ℋ)
3015, 8, 29syl2anc 584 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 ∘ (𝐴 ·op 𝑈)): ℋ⟶ ℋ)
31 simp1 1135 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → 𝐴 ∈ ℂ)
32 homulcl 30121 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑇𝑈): ℋ⟶ ℋ) → (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ)
3331, 18, 32syl2anc 584 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ)
34 hoeq 30122 . . 3 (((𝑇 ∘ (𝐴 ·op 𝑈)): ℋ⟶ ℋ ∧ (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((𝑇 ∘ (𝐴 ·op 𝑈))‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥) ↔ (𝑇 ∘ (𝐴 ·op 𝑈)) = (𝐴 ·op (𝑇𝑈))))
3530, 33, 34syl2anc 584 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((𝑇 ∘ (𝐴 ·op 𝑈))‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥) ↔ (𝑇 ∘ (𝐴 ·op 𝑈)) = (𝐴 ·op (𝑇𝑈))))
3628, 35mpbid 231 1 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 ∘ (𝐴 ·op 𝑈)) = (𝐴 ·op (𝑇𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  chba 29281   · csm 29283   ·op chot 29301  LinOpclo 29309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-hilex 29361  ax-hfvadd 29362  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvdistr2 29371  ax-hvmul0 29372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-sub 11207  df-neg 11208  df-hvsub 29333  df-homul 30093  df-lnop 30203
This theorem is referenced by:  opsqrlem1  30502
  Copyright terms: Public domain W3C validator