HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homco2 Structured version   Visualization version   GIF version

Theorem homco2 31996
Description: Move a scalar product out of a composition of operators. The operator 𝑇 must be linear, unlike homco1 31820 that works for any operators. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
homco2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 ∘ (𝐴 ·op 𝑈)) = (𝐴 ·op (𝑇𝑈)))

Proof of Theorem homco2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℂ)
2 simpl3 1194 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑈: ℋ⟶ ℋ)
3 simpr 484 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
4 homval 31760 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑈)‘𝑥) = (𝐴 · (𝑈𝑥)))
51, 2, 3, 4syl3anc 1373 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑈)‘𝑥) = (𝐴 · (𝑈𝑥)))
65fveq2d 6910 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇‘((𝐴 ·op 𝑈)‘𝑥)) = (𝑇‘(𝐴 · (𝑈𝑥))))
7 homulcl 31778 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op 𝑈): ℋ⟶ ℋ)
873adant2 1132 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op 𝑈): ℋ⟶ ℋ)
9 fvco3 7008 . . . . 5 (((𝐴 ·op 𝑈): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 ∘ (𝐴 ·op 𝑈))‘𝑥) = (𝑇‘((𝐴 ·op 𝑈)‘𝑥)))
108, 9sylan 580 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇 ∘ (𝐴 ·op 𝑈))‘𝑥) = (𝑇‘((𝐴 ·op 𝑈)‘𝑥)))
11 fvco3 7008 . . . . . . 7 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑈)‘𝑥) = (𝑇‘(𝑈𝑥)))
122, 3, 11syl2anc 584 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑈)‘𝑥) = (𝑇‘(𝑈𝑥)))
1312oveq2d 7447 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇𝑈)‘𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
14 lnopf 31878 . . . . . . . . 9 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
15143ad2ant2 1135 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → 𝑇: ℋ⟶ ℋ)
16 simp3 1139 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → 𝑈: ℋ⟶ ℋ)
17 fco 6760 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇𝑈): ℋ⟶ ℋ)
1815, 16, 17syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝑇𝑈): ℋ⟶ ℋ)
1918adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇𝑈): ℋ⟶ ℋ)
20 homval 31760 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇𝑈): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
211, 19, 3, 20syl3anc 1373 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
22 simpl2 1193 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑇 ∈ LinOp)
2316ffvelcdmda 7104 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
24 lnopmul 31986 . . . . . 6 ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ (𝑈𝑥) ∈ ℋ) → (𝑇‘(𝐴 · (𝑈𝑥))) = (𝐴 · (𝑇‘(𝑈𝑥))))
2522, 1, 23, 24syl3anc 1373 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝐴 · (𝑈𝑥))) = (𝐴 · (𝑇‘(𝑈𝑥))))
2613, 21, 253eqtr4d 2787 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝑇‘(𝐴 · (𝑈𝑥))))
276, 10, 263eqtr4d 2787 . . 3 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇 ∘ (𝐴 ·op 𝑈))‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥))
2827ralrimiva 3146 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ ((𝑇 ∘ (𝐴 ·op 𝑈))‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥))
29 fco 6760 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ) → (𝑇 ∘ (𝐴 ·op 𝑈)): ℋ⟶ ℋ)
3015, 8, 29syl2anc 584 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 ∘ (𝐴 ·op 𝑈)): ℋ⟶ ℋ)
31 simp1 1137 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → 𝐴 ∈ ℂ)
32 homulcl 31778 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑇𝑈): ℋ⟶ ℋ) → (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ)
3331, 18, 32syl2anc 584 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ)
34 hoeq 31779 . . 3 (((𝑇 ∘ (𝐴 ·op 𝑈)): ℋ⟶ ℋ ∧ (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((𝑇 ∘ (𝐴 ·op 𝑈))‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥) ↔ (𝑇 ∘ (𝐴 ·op 𝑈)) = (𝐴 ·op (𝑇𝑈))))
3530, 33, 34syl2anc 584 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((𝑇 ∘ (𝐴 ·op 𝑈))‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥) ↔ (𝑇 ∘ (𝐴 ·op 𝑈)) = (𝐴 ·op (𝑇𝑈))))
3628, 35mpbid 232 1 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 ∘ (𝐴 ·op 𝑈)) = (𝐴 ·op (𝑇𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  ccom 5689  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  chba 30938   · csm 30940   ·op chot 30958  LinOpclo 30966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-hilex 31018  ax-hfvadd 31019  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvdistr2 31028  ax-hvmul0 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494  df-neg 11495  df-hvsub 30990  df-homul 31750  df-lnop 31860
This theorem is referenced by:  opsqrlem1  32159
  Copyright terms: Public domain W3C validator