Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hoeqi | Structured version Visualization version GIF version |
Description: Equality of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hoeq.1 | ⊢ 𝑆: ℋ⟶ ℋ |
hoeq.2 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
hoeqi | ⊢ (∀𝑥 ∈ ℋ (𝑆‘𝑥) = (𝑇‘𝑥) ↔ 𝑆 = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoeq.1 | . 2 ⊢ 𝑆: ℋ⟶ ℋ | |
2 | hoeq.2 | . 2 ⊢ 𝑇: ℋ⟶ ℋ | |
3 | hoeq 30023 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (𝑆‘𝑥) = (𝑇‘𝑥) ↔ 𝑆 = 𝑇)) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (∀𝑥 ∈ ℋ (𝑆‘𝑥) = (𝑇‘𝑥) ↔ 𝑆 = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∀wral 3063 ⟶wf 6414 ‘cfv 6418 ℋchba 29182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: hoaddcomi 30035 hodsi 30038 hoaddassi 30039 hocadddiri 30042 hocsubdiri 30043 hoaddid1i 30049 ho0coi 30051 hoid1i 30052 hoid1ri 30053 honegsubi 30059 hoddii 30252 pjsdii 30418 pjddii 30419 pjss1coi 30426 pjss2coi 30427 pjorthcoi 30432 pjscji 30433 pjtoi 30442 pjclem4 30462 pj3si 30470 pj3cor1i 30472 |
Copyright terms: Public domain | W3C validator |