| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hoeqi | Structured version Visualization version GIF version | ||
| Description: Equality of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hoeq.1 | ⊢ 𝑆: ℋ⟶ ℋ |
| hoeq.2 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hoeqi | ⊢ (∀𝑥 ∈ ℋ (𝑆‘𝑥) = (𝑇‘𝑥) ↔ 𝑆 = 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoeq.1 | . 2 ⊢ 𝑆: ℋ⟶ ℋ | |
| 2 | hoeq.2 | . 2 ⊢ 𝑇: ℋ⟶ ℋ | |
| 3 | hoeq 31689 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (𝑆‘𝑥) = (𝑇‘𝑥) ↔ 𝑆 = 𝑇)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (∀𝑥 ∈ ℋ (𝑆‘𝑥) = (𝑇‘𝑥) ↔ 𝑆 = 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∀wral 3044 ⟶wf 6507 ‘cfv 6511 ℋchba 30848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 |
| This theorem is referenced by: hoaddcomi 31701 hodsi 31704 hoaddassi 31705 hocadddiri 31708 hocsubdiri 31709 hoaddridi 31715 ho0coi 31717 hoid1i 31718 hoid1ri 31719 honegsubi 31725 hoddii 31918 pjsdii 32084 pjddii 32085 pjss1coi 32092 pjss2coi 32093 pjorthcoi 32098 pjscji 32099 pjtoi 32108 pjclem4 32128 pj3si 32136 pj3cor1i 32138 |
| Copyright terms: Public domain | W3C validator |