| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idlrmulcl | Structured version Visualization version GIF version | ||
| Description: An ideal is closed under multiplication on the right. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| idllmulcl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| idllmulcl.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| idllmulcl.3 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| idlrmulcl | ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) ∈ 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idllmulcl.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | idllmulcl.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 3 | idllmulcl.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
| 4 | eqid 2730 | . . . . . 6 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
| 5 | 1, 2, 3, 4 | isidl 38003 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ 𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))) |
| 6 | 5 | biimpa 476 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 ⊆ 𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))) |
| 7 | 6 | simp3d 1144 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) |
| 8 | simpr 484 | . . . . . 6 ⊢ (((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) → (𝑥𝐻𝑧) ∈ 𝐼) | |
| 9 | 8 | ralimi 3067 | . . . . 5 ⊢ (∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) → ∀𝑧 ∈ 𝑋 (𝑥𝐻𝑧) ∈ 𝐼) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) → ∀𝑧 ∈ 𝑋 (𝑥𝐻𝑧) ∈ 𝐼) |
| 11 | 10 | ralimi 3067 | . . 3 ⊢ (∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) → ∀𝑥 ∈ 𝐼 ∀𝑧 ∈ 𝑋 (𝑥𝐻𝑧) ∈ 𝐼) |
| 12 | 7, 11 | syl 17 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥 ∈ 𝐼 ∀𝑧 ∈ 𝑋 (𝑥𝐻𝑧) ∈ 𝐼) |
| 13 | oveq1 7396 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐻𝑧) = (𝐴𝐻𝑧)) | |
| 14 | 13 | eleq1d 2814 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝐻𝑧) ∈ 𝐼 ↔ (𝐴𝐻𝑧) ∈ 𝐼)) |
| 15 | oveq2 7397 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝐴𝐻𝑧) = (𝐴𝐻𝐵)) | |
| 16 | 15 | eleq1d 2814 | . . 3 ⊢ (𝑧 = 𝐵 → ((𝐴𝐻𝑧) ∈ 𝐼 ↔ (𝐴𝐻𝐵) ∈ 𝐼)) |
| 17 | 14, 16 | rspc2v 3602 | . 2 ⊢ ((𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝐼 ∀𝑧 ∈ 𝑋 (𝑥𝐻𝑧) ∈ 𝐼 → (𝐴𝐻𝐵) ∈ 𝐼)) |
| 18 | 12, 17 | mpan9 506 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) ∈ 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3916 ran crn 5641 ‘cfv 6513 (class class class)co 7389 1st c1st 7968 2nd c2nd 7969 GIdcgi 30425 RingOpscrngo 37883 Idlcidl 37996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-idl 37999 |
| This theorem is referenced by: 1idl 38015 intidl 38018 unichnidl 38020 |
| Copyright terms: Public domain | W3C validator |