Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlrmulcl Structured version   Visualization version   GIF version

Theorem idlrmulcl 37535
Description: An ideal is closed under multiplication on the right. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idllmulcl.1 𝐺 = (1st𝑅)
idllmulcl.2 𝐻 = (2nd𝑅)
idllmulcl.3 𝑋 = ran 𝐺
Assertion
Ref Expression
idlrmulcl (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝑋)) → (𝐴𝐻𝐵) ∈ 𝐼)

Proof of Theorem idlrmulcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idllmulcl.1 . . . . . 6 𝐺 = (1st𝑅)
2 idllmulcl.2 . . . . . 6 𝐻 = (2nd𝑅)
3 idllmulcl.3 . . . . . 6 𝑋 = ran 𝐺
4 eqid 2728 . . . . . 6 (GId‘𝐺) = (GId‘𝐺)
51, 2, 3, 4isidl 37528 . . . . 5 (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))))
65biimpa 475 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))
76simp3d 1141 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))
8 simpr 483 . . . . . 6 (((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) → (𝑥𝐻𝑧) ∈ 𝐼)
98ralimi 3080 . . . . 5 (∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) → ∀𝑧𝑋 (𝑥𝐻𝑧) ∈ 𝐼)
109adantl 480 . . . 4 ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) → ∀𝑧𝑋 (𝑥𝐻𝑧) ∈ 𝐼)
1110ralimi 3080 . . 3 (∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) → ∀𝑥𝐼𝑧𝑋 (𝑥𝐻𝑧) ∈ 𝐼)
127, 11syl 17 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥𝐼𝑧𝑋 (𝑥𝐻𝑧) ∈ 𝐼)
13 oveq1 7433 . . . 4 (𝑥 = 𝐴 → (𝑥𝐻𝑧) = (𝐴𝐻𝑧))
1413eleq1d 2814 . . 3 (𝑥 = 𝐴 → ((𝑥𝐻𝑧) ∈ 𝐼 ↔ (𝐴𝐻𝑧) ∈ 𝐼))
15 oveq2 7434 . . . 4 (𝑧 = 𝐵 → (𝐴𝐻𝑧) = (𝐴𝐻𝐵))
1615eleq1d 2814 . . 3 (𝑧 = 𝐵 → ((𝐴𝐻𝑧) ∈ 𝐼 ↔ (𝐴𝐻𝐵) ∈ 𝐼))
1714, 16rspc2v 3622 . 2 ((𝐴𝐼𝐵𝑋) → (∀𝑥𝐼𝑧𝑋 (𝑥𝐻𝑧) ∈ 𝐼 → (𝐴𝐻𝐵) ∈ 𝐼))
1812, 17mpan9 505 1 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝑋)) → (𝐴𝐻𝐵) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3058  wss 3949  ran crn 5683  cfv 6553  (class class class)co 7426  1st c1st 7999  2nd c2nd 8000  GIdcgi 30328  RingOpscrngo 37408  Idlcidl 37521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-iota 6505  df-fun 6555  df-fv 6561  df-ov 7429  df-idl 37524
This theorem is referenced by:  1idl  37540  intidl  37543  unichnidl  37545
  Copyright terms: Public domain W3C validator