Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlrmulcl | Structured version Visualization version GIF version |
Description: An ideal is closed under multiplication on the right. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
idllmulcl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
idllmulcl.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
idllmulcl.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
idlrmulcl | ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idllmulcl.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | idllmulcl.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
3 | idllmulcl.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
4 | eqid 2737 | . . . . . 6 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
5 | 1, 2, 3, 4 | isidl 36228 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ 𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))) |
6 | 5 | biimpa 477 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 ⊆ 𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))) |
7 | 6 | simp3d 1143 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) |
8 | simpr 485 | . . . . . 6 ⊢ (((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) → (𝑥𝐻𝑧) ∈ 𝐼) | |
9 | 8 | ralimi 3083 | . . . . 5 ⊢ (∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) → ∀𝑧 ∈ 𝑋 (𝑥𝐻𝑧) ∈ 𝐼) |
10 | 9 | adantl 482 | . . . 4 ⊢ ((∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) → ∀𝑧 ∈ 𝑋 (𝑥𝐻𝑧) ∈ 𝐼) |
11 | 10 | ralimi 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) → ∀𝑥 ∈ 𝐼 ∀𝑧 ∈ 𝑋 (𝑥𝐻𝑧) ∈ 𝐼) |
12 | 7, 11 | syl 17 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥 ∈ 𝐼 ∀𝑧 ∈ 𝑋 (𝑥𝐻𝑧) ∈ 𝐼) |
13 | oveq1 7322 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐻𝑧) = (𝐴𝐻𝑧)) | |
14 | 13 | eleq1d 2822 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝐻𝑧) ∈ 𝐼 ↔ (𝐴𝐻𝑧) ∈ 𝐼)) |
15 | oveq2 7323 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝐴𝐻𝑧) = (𝐴𝐻𝐵)) | |
16 | 15 | eleq1d 2822 | . . 3 ⊢ (𝑧 = 𝐵 → ((𝐴𝐻𝑧) ∈ 𝐼 ↔ (𝐴𝐻𝐵) ∈ 𝐼)) |
17 | 14, 16 | rspc2v 3579 | . 2 ⊢ ((𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝐼 ∀𝑧 ∈ 𝑋 (𝑥𝐻𝑧) ∈ 𝐼 → (𝐴𝐻𝐵) ∈ 𝐼)) |
18 | 12, 17 | mpan9 507 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3062 ⊆ wss 3897 ran crn 5608 ‘cfv 6465 (class class class)co 7315 1st c1st 7874 2nd c2nd 7875 GIdcgi 28961 RingOpscrngo 36108 Idlcidl 36221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-iota 6417 df-fun 6467 df-fv 6473 df-ov 7318 df-idl 36224 |
This theorem is referenced by: 1idl 36240 intidl 36243 unichnidl 36245 |
Copyright terms: Public domain | W3C validator |