Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlval Structured version   Visualization version   GIF version

Theorem idlval 38032
Description: The class of ideals of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idlval.1 𝐺 = (1st𝑅)
idlval.2 𝐻 = (2nd𝑅)
idlval.3 𝑋 = ran 𝐺
idlval.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
idlval (𝑅 ∈ RingOps → (Idl‘𝑅) = {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))})
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧,𝑖   𝑧,𝑋,𝑖   𝑖,𝑍   𝑖,𝐺   𝑖,𝐻
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦)   𝑍(𝑥,𝑦,𝑧)

Proof of Theorem idlval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6817 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
2 idlval.1 . . . . . . 7 𝐺 = (1st𝑅)
31, 2eqtr4di 2783 . . . . . 6 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
43rneqd 5875 . . . . 5 (𝑟 = 𝑅 → ran (1st𝑟) = ran 𝐺)
5 idlval.3 . . . . 5 𝑋 = ran 𝐺
64, 5eqtr4di 2783 . . . 4 (𝑟 = 𝑅 → ran (1st𝑟) = 𝑋)
76pweqd 4565 . . 3 (𝑟 = 𝑅 → 𝒫 ran (1st𝑟) = 𝒫 𝑋)
83fveq2d 6821 . . . . . 6 (𝑟 = 𝑅 → (GId‘(1st𝑟)) = (GId‘𝐺))
9 idlval.4 . . . . . 6 𝑍 = (GId‘𝐺)
108, 9eqtr4di 2783 . . . . 5 (𝑟 = 𝑅 → (GId‘(1st𝑟)) = 𝑍)
1110eleq1d 2814 . . . 4 (𝑟 = 𝑅 → ((GId‘(1st𝑟)) ∈ 𝑖𝑍𝑖))
123oveqd 7358 . . . . . . . 8 (𝑟 = 𝑅 → (𝑥(1st𝑟)𝑦) = (𝑥𝐺𝑦))
1312eleq1d 2814 . . . . . . 7 (𝑟 = 𝑅 → ((𝑥(1st𝑟)𝑦) ∈ 𝑖 ↔ (𝑥𝐺𝑦) ∈ 𝑖))
1413ralbidv 3153 . . . . . 6 (𝑟 = 𝑅 → (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ↔ ∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖))
15 fveq2 6817 . . . . . . . . . . 11 (𝑟 = 𝑅 → (2nd𝑟) = (2nd𝑅))
16 idlval.2 . . . . . . . . . . 11 𝐻 = (2nd𝑅)
1715, 16eqtr4di 2783 . . . . . . . . . 10 (𝑟 = 𝑅 → (2nd𝑟) = 𝐻)
1817oveqd 7358 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑧(2nd𝑟)𝑥) = (𝑧𝐻𝑥))
1918eleq1d 2814 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ↔ (𝑧𝐻𝑥) ∈ 𝑖))
2017oveqd 7358 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑥(2nd𝑟)𝑧) = (𝑥𝐻𝑧))
2120eleq1d 2814 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑥(2nd𝑟)𝑧) ∈ 𝑖 ↔ (𝑥𝐻𝑧) ∈ 𝑖))
2219, 21anbi12d 632 . . . . . . 7 (𝑟 = 𝑅 → (((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖) ↔ ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))
236, 22raleqbidv 3310 . . . . . 6 (𝑟 = 𝑅 → (∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖) ↔ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))
2414, 23anbi12d 632 . . . . 5 (𝑟 = 𝑅 → ((∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖)) ↔ (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖))))
2524ralbidv 3153 . . . 4 (𝑟 = 𝑅 → (∀𝑥𝑖 (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖)) ↔ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖))))
2611, 25anbi12d 632 . . 3 (𝑟 = 𝑅 → (((GId‘(1st𝑟)) ∈ 𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖))) ↔ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))))
277, 26rabeqbidv 3411 . 2 (𝑟 = 𝑅 → {𝑖 ∈ 𝒫 ran (1st𝑟) ∣ ((GId‘(1st𝑟)) ∈ 𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖)))} = {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))})
28 df-idl 38029 . 2 Idl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ 𝒫 ran (1st𝑟) ∣ ((GId‘(1st𝑟)) ∈ 𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖)))})
292fvexi 6831 . . . . . 6 𝐺 ∈ V
3029rnex 7835 . . . . 5 ran 𝐺 ∈ V
315, 30eqeltri 2825 . . . 4 𝑋 ∈ V
3231pwex 5316 . . 3 𝒫 𝑋 ∈ V
3332rabex 5275 . 2 {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))} ∈ V
3427, 28, 33fvmpt 6924 1 (𝑅 ∈ RingOps → (Idl‘𝑅) = {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  wral 3045  {crab 3393  Vcvv 3434  𝒫 cpw 4548  ran crn 5615  cfv 6477  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  GIdcgi 30460  RingOpscrngo 37913  Idlcidl 38026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344  df-idl 38029
This theorem is referenced by:  isidl  38033
  Copyright terms: Public domain W3C validator