Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlval Structured version   Visualization version   GIF version

Theorem idlval 38042
Description: The class of ideals of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idlval.1 𝐺 = (1st𝑅)
idlval.2 𝐻 = (2nd𝑅)
idlval.3 𝑋 = ran 𝐺
idlval.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
idlval (𝑅 ∈ RingOps → (Idl‘𝑅) = {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))})
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧,𝑖   𝑧,𝑋,𝑖   𝑖,𝑍   𝑖,𝐺   𝑖,𝐻
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦)   𝑍(𝑥,𝑦,𝑧)

Proof of Theorem idlval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
2 idlval.1 . . . . . . 7 𝐺 = (1st𝑅)
31, 2eqtr4di 2789 . . . . . 6 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
43rneqd 5923 . . . . 5 (𝑟 = 𝑅 → ran (1st𝑟) = ran 𝐺)
5 idlval.3 . . . . 5 𝑋 = ran 𝐺
64, 5eqtr4di 2789 . . . 4 (𝑟 = 𝑅 → ran (1st𝑟) = 𝑋)
76pweqd 4597 . . 3 (𝑟 = 𝑅 → 𝒫 ran (1st𝑟) = 𝒫 𝑋)
83fveq2d 6885 . . . . . 6 (𝑟 = 𝑅 → (GId‘(1st𝑟)) = (GId‘𝐺))
9 idlval.4 . . . . . 6 𝑍 = (GId‘𝐺)
108, 9eqtr4di 2789 . . . . 5 (𝑟 = 𝑅 → (GId‘(1st𝑟)) = 𝑍)
1110eleq1d 2820 . . . 4 (𝑟 = 𝑅 → ((GId‘(1st𝑟)) ∈ 𝑖𝑍𝑖))
123oveqd 7427 . . . . . . . 8 (𝑟 = 𝑅 → (𝑥(1st𝑟)𝑦) = (𝑥𝐺𝑦))
1312eleq1d 2820 . . . . . . 7 (𝑟 = 𝑅 → ((𝑥(1st𝑟)𝑦) ∈ 𝑖 ↔ (𝑥𝐺𝑦) ∈ 𝑖))
1413ralbidv 3164 . . . . . 6 (𝑟 = 𝑅 → (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ↔ ∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖))
15 fveq2 6881 . . . . . . . . . . 11 (𝑟 = 𝑅 → (2nd𝑟) = (2nd𝑅))
16 idlval.2 . . . . . . . . . . 11 𝐻 = (2nd𝑅)
1715, 16eqtr4di 2789 . . . . . . . . . 10 (𝑟 = 𝑅 → (2nd𝑟) = 𝐻)
1817oveqd 7427 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑧(2nd𝑟)𝑥) = (𝑧𝐻𝑥))
1918eleq1d 2820 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ↔ (𝑧𝐻𝑥) ∈ 𝑖))
2017oveqd 7427 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑥(2nd𝑟)𝑧) = (𝑥𝐻𝑧))
2120eleq1d 2820 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑥(2nd𝑟)𝑧) ∈ 𝑖 ↔ (𝑥𝐻𝑧) ∈ 𝑖))
2219, 21anbi12d 632 . . . . . . 7 (𝑟 = 𝑅 → (((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖) ↔ ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))
236, 22raleqbidv 3329 . . . . . 6 (𝑟 = 𝑅 → (∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖) ↔ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))
2414, 23anbi12d 632 . . . . 5 (𝑟 = 𝑅 → ((∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖)) ↔ (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖))))
2524ralbidv 3164 . . . 4 (𝑟 = 𝑅 → (∀𝑥𝑖 (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖)) ↔ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖))))
2611, 25anbi12d 632 . . 3 (𝑟 = 𝑅 → (((GId‘(1st𝑟)) ∈ 𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖))) ↔ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))))
277, 26rabeqbidv 3439 . 2 (𝑟 = 𝑅 → {𝑖 ∈ 𝒫 ran (1st𝑟) ∣ ((GId‘(1st𝑟)) ∈ 𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖)))} = {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))})
28 df-idl 38039 . 2 Idl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ 𝒫 ran (1st𝑟) ∣ ((GId‘(1st𝑟)) ∈ 𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖)))})
292fvexi 6895 . . . . . 6 𝐺 ∈ V
3029rnex 7911 . . . . 5 ran 𝐺 ∈ V
315, 30eqeltri 2831 . . . 4 𝑋 ∈ V
3231pwex 5355 . . 3 𝒫 𝑋 ∈ V
3332rabex 5314 . 2 {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))} ∈ V
3427, 28, 33fvmpt 6991 1 (𝑅 ∈ RingOps → (Idl‘𝑅) = {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  {crab 3420  Vcvv 3464  𝒫 cpw 4580  ran crn 5660  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  GIdcgi 30476  RingOpscrngo 37923  Idlcidl 38036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-idl 38039
This theorem is referenced by:  isidl  38043
  Copyright terms: Public domain W3C validator