 Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlval Structured version   Visualization version   GIF version

Theorem idlval 34353
 Description: The class of ideals of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idlval.1 𝐺 = (1st𝑅)
idlval.2 𝐻 = (2nd𝑅)
idlval.3 𝑋 = ran 𝐺
idlval.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
idlval (𝑅 ∈ RingOps → (Idl‘𝑅) = {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))})
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧,𝑖   𝑧,𝑋,𝑖   𝑖,𝑍   𝑖,𝐺   𝑖,𝐻
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦)   𝑍(𝑥,𝑦,𝑧)

Proof of Theorem idlval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6432 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
2 idlval.1 . . . . . . 7 𝐺 = (1st𝑅)
31, 2syl6eqr 2878 . . . . . 6 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
43rneqd 5584 . . . . 5 (𝑟 = 𝑅 → ran (1st𝑟) = ran 𝐺)
5 idlval.3 . . . . 5 𝑋 = ran 𝐺
64, 5syl6eqr 2878 . . . 4 (𝑟 = 𝑅 → ran (1st𝑟) = 𝑋)
76pweqd 4382 . . 3 (𝑟 = 𝑅 → 𝒫 ran (1st𝑟) = 𝒫 𝑋)
83fveq2d 6436 . . . . . 6 (𝑟 = 𝑅 → (GId‘(1st𝑟)) = (GId‘𝐺))
9 idlval.4 . . . . . 6 𝑍 = (GId‘𝐺)
108, 9syl6eqr 2878 . . . . 5 (𝑟 = 𝑅 → (GId‘(1st𝑟)) = 𝑍)
1110eleq1d 2890 . . . 4 (𝑟 = 𝑅 → ((GId‘(1st𝑟)) ∈ 𝑖𝑍𝑖))
123oveqd 6921 . . . . . . . 8 (𝑟 = 𝑅 → (𝑥(1st𝑟)𝑦) = (𝑥𝐺𝑦))
1312eleq1d 2890 . . . . . . 7 (𝑟 = 𝑅 → ((𝑥(1st𝑟)𝑦) ∈ 𝑖 ↔ (𝑥𝐺𝑦) ∈ 𝑖))
1413ralbidv 3194 . . . . . 6 (𝑟 = 𝑅 → (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ↔ ∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖))
15 fveq2 6432 . . . . . . . . . . 11 (𝑟 = 𝑅 → (2nd𝑟) = (2nd𝑅))
16 idlval.2 . . . . . . . . . . 11 𝐻 = (2nd𝑅)
1715, 16syl6eqr 2878 . . . . . . . . . 10 (𝑟 = 𝑅 → (2nd𝑟) = 𝐻)
1817oveqd 6921 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑧(2nd𝑟)𝑥) = (𝑧𝐻𝑥))
1918eleq1d 2890 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ↔ (𝑧𝐻𝑥) ∈ 𝑖))
2017oveqd 6921 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑥(2nd𝑟)𝑧) = (𝑥𝐻𝑧))
2120eleq1d 2890 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑥(2nd𝑟)𝑧) ∈ 𝑖 ↔ (𝑥𝐻𝑧) ∈ 𝑖))
2219, 21anbi12d 626 . . . . . . 7 (𝑟 = 𝑅 → (((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖) ↔ ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))
236, 22raleqbidv 3363 . . . . . 6 (𝑟 = 𝑅 → (∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖) ↔ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))
2414, 23anbi12d 626 . . . . 5 (𝑟 = 𝑅 → ((∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖)) ↔ (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖))))
2524ralbidv 3194 . . . 4 (𝑟 = 𝑅 → (∀𝑥𝑖 (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖)) ↔ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖))))
2611, 25anbi12d 626 . . 3 (𝑟 = 𝑅 → (((GId‘(1st𝑟)) ∈ 𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖))) ↔ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))))
277, 26rabeqbidv 3407 . 2 (𝑟 = 𝑅 → {𝑖 ∈ 𝒫 ran (1st𝑟) ∣ ((GId‘(1st𝑟)) ∈ 𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖)))} = {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))})
28 df-idl 34350 . 2 Idl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ 𝒫 ran (1st𝑟) ∣ ((GId‘(1st𝑟)) ∈ 𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖)))})
292fvexi 6446 . . . . . 6 𝐺 ∈ V
3029rnex 7361 . . . . 5 ran 𝐺 ∈ V
315, 30eqeltri 2901 . . . 4 𝑋 ∈ V
3231pwex 5079 . . 3 𝒫 𝑋 ∈ V
3332rabex 5036 . 2 {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))} ∈ V
3427, 28, 33fvmpt 6528 1 (𝑅 ∈ RingOps → (Idl‘𝑅) = {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1658   ∈ wcel 2166  ∀wral 3116  {crab 3120  Vcvv 3413  𝒫 cpw 4377  ran crn 5342  ‘cfv 6122  (class class class)co 6904  1st c1st 7425  2nd c2nd 7426  GIdcgi 27899  RingOpscrngo 34234  Idlcidl 34347 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ral 3121  df-rex 3122  df-rab 3125  df-v 3415  df-sbc 3662  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-iota 6085  df-fun 6124  df-fv 6130  df-ov 6907  df-idl 34350 This theorem is referenced by:  isidl  34354
 Copyright terms: Public domain W3C validator