Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasubc3lem1 Structured version   Visualization version   GIF version

Theorem imasubc3lem1 48959
Description: Lemma for imasubc3 48966. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc3lem1.s 𝑆 = (𝐹𝐴)
imasubc3lem1.f (𝜑𝐹:𝐵1-1𝐶)
imasubc3lem1.x (𝜑𝑋𝑆)
Assertion
Ref Expression
imasubc3lem1 (𝜑 → ({(𝐹𝑋)} = (𝐹 “ {𝑋}) ∧ (𝐹‘(𝐹𝑋)) = 𝑋 ∧ (𝐹𝑋) ∈ 𝐵))

Proof of Theorem imasubc3lem1
StepHypRef Expression
1 imasubc3lem1.f . . . . 5 (𝜑𝐹:𝐵1-1𝐶)
2 f1f1orn 6826 . . . . 5 (𝐹:𝐵1-1𝐶𝐹:𝐵1-1-onto→ran 𝐹)
31, 2syl 17 . . . 4 (𝜑𝐹:𝐵1-1-onto→ran 𝐹)
4 dff1o4 6823 . . . . 5 (𝐹:𝐵1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐵𝐹 Fn ran 𝐹))
54simprbi 496 . . . 4 (𝐹:𝐵1-1-onto→ran 𝐹𝐹 Fn ran 𝐹)
63, 5syl 17 . . 3 (𝜑𝐹 Fn ran 𝐹)
7 imassrn 6056 . . . 4 (𝐹𝐴) ⊆ ran 𝐹
8 imasubc3lem1.x . . . . 5 (𝜑𝑋𝑆)
9 imasubc3lem1.s . . . . 5 𝑆 = (𝐹𝐴)
108, 9eleqtrdi 2843 . . . 4 (𝜑𝑋 ∈ (𝐹𝐴))
117, 10sselid 3954 . . 3 (𝜑𝑋 ∈ ran 𝐹)
12 fnsnfv 6955 . . 3 ((𝐹 Fn ran 𝐹𝑋 ∈ ran 𝐹) → {(𝐹𝑋)} = (𝐹 “ {𝑋}))
136, 11, 12syl2anc 584 . 2 (𝜑 → {(𝐹𝑋)} = (𝐹 “ {𝑋}))
14 f1ocnvfv2 7266 . . 3 ((𝐹:𝐵1-1-onto→ran 𝐹𝑋 ∈ ran 𝐹) → (𝐹‘(𝐹𝑋)) = 𝑋)
153, 11, 14syl2anc 584 . 2 (𝜑 → (𝐹‘(𝐹𝑋)) = 𝑋)
16 f1ocnvdm 7274 . . 3 ((𝐹:𝐵1-1-onto→ran 𝐹𝑋 ∈ ran 𝐹) → (𝐹𝑋) ∈ 𝐵)
173, 11, 16syl2anc 584 . 2 (𝜑 → (𝐹𝑋) ∈ 𝐵)
1813, 15, 173jca 1128 1 (𝜑 → ({(𝐹𝑋)} = (𝐹 “ {𝑋}) ∧ (𝐹‘(𝐹𝑋)) = 𝑋 ∧ (𝐹𝑋) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  {csn 4599  ccnv 5651  ran crn 5653  cima 5655   Fn wfn 6523  1-1wf1 6525  1-1-ontowf1o 6527  cfv 6528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536
This theorem is referenced by:  imasubc3lem2  48960  imaf1co  48965
  Copyright terms: Public domain W3C validator