Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasubc3 Structured version   Visualization version   GIF version

Theorem imasubc3 49138
Description: An image of a functor injective on objects is a subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc.s 𝑆 = (𝐹𝐴)
imasubc.h 𝐻 = (Hom ‘𝐷)
imasubc.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
imassc.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
imasubc3.f (𝜑 → Fun 𝐹)
Assertion
Ref Expression
imasubc3 (𝜑𝐾 ∈ (Subcat‘𝐸))
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝐸,𝑝   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imasubc3
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasubc.s . . 3 𝑆 = (𝐹𝐴)
2 imasubc.h . . 3 𝐻 = (Hom ‘𝐷)
3 imasubc.k . . 3 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
4 imassc.f . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
5 eqid 2729 . . 3 (Homf𝐸) = (Homf𝐸)
61, 2, 3, 4, 5imassc 49135 . 2 (𝜑𝐾cat (Homf𝐸))
74adantr 480 . . . . 5 ((𝜑𝑎𝑆) → 𝐹(𝐷 Func 𝐸)𝐺)
8 eqid 2729 . . . . 5 (Id‘𝐸) = (Id‘𝐸)
9 simpr 484 . . . . 5 ((𝜑𝑎𝑆) → 𝑎𝑆)
101, 2, 3, 7, 8, 9imaid 49136 . . . 4 ((𝜑𝑎𝑆) → ((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎))
114ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝐹(𝐷 Func 𝐸)𝐺)
12 eqid 2729 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
13 eqid 2729 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
14 eqid 2729 . . . . . . 7 (comp‘𝐸) = (comp‘𝐸)
1512, 13, 4funcf1 17808 . . . . . . . . 9 (𝜑𝐹:(Base‘𝐷)⟶(Base‘𝐸))
16 imasubc3.f . . . . . . . . 9 (𝜑 → Fun 𝐹)
17 df-f1 6504 . . . . . . . . 9 (𝐹:(Base‘𝐷)–1-1→(Base‘𝐸) ↔ (𝐹:(Base‘𝐷)⟶(Base‘𝐸) ∧ Fun 𝐹))
1815, 16, 17sylanbrc 583 . . . . . . . 8 (𝜑𝐹:(Base‘𝐷)–1-1→(Base‘𝐸))
1918ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝐹:(Base‘𝐷)–1-1→(Base‘𝐸))
20 simpllr 775 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑎𝑆)
21 simplrl 776 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑏𝑆)
22 simplrr 777 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑐𝑆)
23 simprl 770 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑓 ∈ (𝑎𝐾𝑏))
24 simprr 772 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑔 ∈ (𝑏𝐾𝑐))
251, 2, 3, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24imaf1co 49137 . . . . . 6 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
2625ralrimivva 3178 . . . . 5 (((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) → ∀𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
2726ralrimivva 3178 . . . 4 ((𝜑𝑎𝑆) → ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
2810, 27jca 511 . . 3 ((𝜑𝑎𝑆) → (((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))
2928ralrimiva 3125 . 2 (𝜑 → ∀𝑎𝑆 (((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))
304funcrcl3 49062 . . 3 (𝜑𝐸 ∈ Cat)
31 relfunc 17804 . . . . . 6 Rel (𝐷 Func 𝐸)
3231brrelex1i 5687 . . . . 5 (𝐹(𝐷 Func 𝐸)𝐺𝐹 ∈ V)
334, 32syl 17 . . . 4 (𝜑𝐹 ∈ V)
3433, 33, 3imasubclem2 49087 . . 3 (𝜑𝐾 Fn (𝑆 × 𝑆))
355, 8, 14, 30, 34issubc2 17778 . 2 (𝜑 → (𝐾 ∈ (Subcat‘𝐸) ↔ (𝐾cat (Homf𝐸) ∧ ∀𝑎𝑆 (((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))))
366, 29, 35mpbir2and 713 1 (𝜑𝐾 ∈ (Subcat‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  {csn 4585  cop 4591   ciun 4951   class class class wbr 5102   × cxp 5629  ccnv 5630  cima 5634  Fun wfun 6493  wf 6495  1-1wf1 6496  cfv 6499  (class class class)co 7369  cmpo 7371  Basecbs 17155  Hom chom 17207  compcco 17208  Idccid 17606  Homf chomf 17607  cat cssc 17749  Subcatcsubc 17751   Func cfunc 17796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-pm 8779  df-ixp 8848  df-cat 17609  df-cid 17610  df-homf 17611  df-ssc 17752  df-subc 17754  df-func 17800
This theorem is referenced by:  idsubc  49142
  Copyright terms: Public domain W3C validator