Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasubc3 Structured version   Visualization version   GIF version

Theorem imasubc3 49267
Description: An image of a functor injective on objects is a subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc.s 𝑆 = (𝐹𝐴)
imasubc.h 𝐻 = (Hom ‘𝐷)
imasubc.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
imassc.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
imasubc3.f (𝜑 → Fun 𝐹)
Assertion
Ref Expression
imasubc3 (𝜑𝐾 ∈ (Subcat‘𝐸))
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝐸,𝑝   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imasubc3
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasubc.s . . 3 𝑆 = (𝐹𝐴)
2 imasubc.h . . 3 𝐻 = (Hom ‘𝐷)
3 imasubc.k . . 3 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
4 imassc.f . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
5 eqid 2731 . . 3 (Homf𝐸) = (Homf𝐸)
61, 2, 3, 4, 5imassc 49264 . 2 (𝜑𝐾cat (Homf𝐸))
74adantr 480 . . . . 5 ((𝜑𝑎𝑆) → 𝐹(𝐷 Func 𝐸)𝐺)
8 eqid 2731 . . . . 5 (Id‘𝐸) = (Id‘𝐸)
9 simpr 484 . . . . 5 ((𝜑𝑎𝑆) → 𝑎𝑆)
101, 2, 3, 7, 8, 9imaid 49265 . . . 4 ((𝜑𝑎𝑆) → ((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎))
114ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝐹(𝐷 Func 𝐸)𝐺)
12 eqid 2731 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
13 eqid 2731 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
14 eqid 2731 . . . . . . 7 (comp‘𝐸) = (comp‘𝐸)
1512, 13, 4funcf1 17773 . . . . . . . . 9 (𝜑𝐹:(Base‘𝐷)⟶(Base‘𝐸))
16 imasubc3.f . . . . . . . . 9 (𝜑 → Fun 𝐹)
17 df-f1 6486 . . . . . . . . 9 (𝐹:(Base‘𝐷)–1-1→(Base‘𝐸) ↔ (𝐹:(Base‘𝐷)⟶(Base‘𝐸) ∧ Fun 𝐹))
1815, 16, 17sylanbrc 583 . . . . . . . 8 (𝜑𝐹:(Base‘𝐷)–1-1→(Base‘𝐸))
1918ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝐹:(Base‘𝐷)–1-1→(Base‘𝐸))
20 simpllr 775 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑎𝑆)
21 simplrl 776 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑏𝑆)
22 simplrr 777 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑐𝑆)
23 simprl 770 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑓 ∈ (𝑎𝐾𝑏))
24 simprr 772 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑔 ∈ (𝑏𝐾𝑐))
251, 2, 3, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24imaf1co 49266 . . . . . 6 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
2625ralrimivva 3175 . . . . 5 (((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) → ∀𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
2726ralrimivva 3175 . . . 4 ((𝜑𝑎𝑆) → ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
2810, 27jca 511 . . 3 ((𝜑𝑎𝑆) → (((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))
2928ralrimiva 3124 . 2 (𝜑 → ∀𝑎𝑆 (((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))
304funcrcl3 49191 . . 3 (𝜑𝐸 ∈ Cat)
31 relfunc 17769 . . . . . 6 Rel (𝐷 Func 𝐸)
3231brrelex1i 5670 . . . . 5 (𝐹(𝐷 Func 𝐸)𝐺𝐹 ∈ V)
334, 32syl 17 . . . 4 (𝜑𝐹 ∈ V)
3433, 33, 3imasubclem2 49216 . . 3 (𝜑𝐾 Fn (𝑆 × 𝑆))
355, 8, 14, 30, 34issubc2 17743 . 2 (𝜑 → (𝐾 ∈ (Subcat‘𝐸) ↔ (𝐾cat (Homf𝐸) ∧ ∀𝑎𝑆 (((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))))
366, 29, 35mpbir2and 713 1 (𝜑𝐾 ∈ (Subcat‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  {csn 4573  cop 4579   ciun 4939   class class class wbr 5089   × cxp 5612  ccnv 5613  cima 5617  Fun wfun 6475  wf 6477  1-1wf1 6478  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17120  Hom chom 17172  compcco 17173  Idccid 17571  Homf chomf 17572  cat cssc 17714  Subcatcsubc 17716   Func cfunc 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-pm 8753  df-ixp 8822  df-cat 17574  df-cid 17575  df-homf 17576  df-ssc 17717  df-subc 17719  df-func 17765
This theorem is referenced by:  idsubc  49271
  Copyright terms: Public domain W3C validator