Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasubc3 Structured version   Visualization version   GIF version

Theorem imasubc3 49135
Description: An image of a functor injective on objects is a subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc.s 𝑆 = (𝐹𝐴)
imasubc.h 𝐻 = (Hom ‘𝐷)
imasubc.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
imassc.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
imasubc3.f (𝜑 → Fun 𝐹)
Assertion
Ref Expression
imasubc3 (𝜑𝐾 ∈ (Subcat‘𝐸))
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝐸,𝑝   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imasubc3
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasubc.s . . 3 𝑆 = (𝐹𝐴)
2 imasubc.h . . 3 𝐻 = (Hom ‘𝐷)
3 imasubc.k . . 3 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
4 imassc.f . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
5 eqid 2730 . . 3 (Homf𝐸) = (Homf𝐸)
61, 2, 3, 4, 5imassc 49132 . 2 (𝜑𝐾cat (Homf𝐸))
74adantr 480 . . . . 5 ((𝜑𝑎𝑆) → 𝐹(𝐷 Func 𝐸)𝐺)
8 eqid 2730 . . . . 5 (Id‘𝐸) = (Id‘𝐸)
9 simpr 484 . . . . 5 ((𝜑𝑎𝑆) → 𝑎𝑆)
101, 2, 3, 7, 8, 9imaid 49133 . . . 4 ((𝜑𝑎𝑆) → ((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎))
114ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝐹(𝐷 Func 𝐸)𝐺)
12 eqid 2730 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
13 eqid 2730 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
14 eqid 2730 . . . . . . 7 (comp‘𝐸) = (comp‘𝐸)
1512, 13, 4funcf1 17834 . . . . . . . . 9 (𝜑𝐹:(Base‘𝐷)⟶(Base‘𝐸))
16 imasubc3.f . . . . . . . . 9 (𝜑 → Fun 𝐹)
17 df-f1 6518 . . . . . . . . 9 (𝐹:(Base‘𝐷)–1-1→(Base‘𝐸) ↔ (𝐹:(Base‘𝐷)⟶(Base‘𝐸) ∧ Fun 𝐹))
1815, 16, 17sylanbrc 583 . . . . . . . 8 (𝜑𝐹:(Base‘𝐷)–1-1→(Base‘𝐸))
1918ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝐹:(Base‘𝐷)–1-1→(Base‘𝐸))
20 simpllr 775 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑎𝑆)
21 simplrl 776 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑏𝑆)
22 simplrr 777 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑐𝑆)
23 simprl 770 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑓 ∈ (𝑎𝐾𝑏))
24 simprr 772 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑔 ∈ (𝑏𝐾𝑐))
251, 2, 3, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24imaf1co 49134 . . . . . 6 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
2625ralrimivva 3181 . . . . 5 (((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) → ∀𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
2726ralrimivva 3181 . . . 4 ((𝜑𝑎𝑆) → ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
2810, 27jca 511 . . 3 ((𝜑𝑎𝑆) → (((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))
2928ralrimiva 3126 . 2 (𝜑 → ∀𝑎𝑆 (((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))
304funcrcl3 49059 . . 3 (𝜑𝐸 ∈ Cat)
31 relfunc 17830 . . . . . 6 Rel (𝐷 Func 𝐸)
3231brrelex1i 5696 . . . . 5 (𝐹(𝐷 Func 𝐸)𝐺𝐹 ∈ V)
334, 32syl 17 . . . 4 (𝜑𝐹 ∈ V)
3433, 33, 3imasubclem2 49084 . . 3 (𝜑𝐾 Fn (𝑆 × 𝑆))
355, 8, 14, 30, 34issubc2 17804 . 2 (𝜑 → (𝐾 ∈ (Subcat‘𝐸) ↔ (𝐾cat (Homf𝐸) ∧ ∀𝑎𝑆 (((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))))
366, 29, 35mpbir2and 713 1 (𝜑𝐾 ∈ (Subcat‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  {csn 4591  cop 4597   ciun 4957   class class class wbr 5109   × cxp 5638  ccnv 5639  cima 5643  Fun wfun 6507  wf 6509  1-1wf1 6510  cfv 6513  (class class class)co 7389  cmpo 7391  Basecbs 17185  Hom chom 17237  compcco 17238  Idccid 17632  Homf chomf 17633  cat cssc 17775  Subcatcsubc 17777   Func cfunc 17822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-pm 8804  df-ixp 8873  df-cat 17635  df-cid 17636  df-homf 17637  df-ssc 17778  df-subc 17780  df-func 17826
This theorem is referenced by:  idsubc  49139
  Copyright terms: Public domain W3C validator