| Step | Hyp | Ref
| Expression |
| 1 | | imasubc.s |
. . 3
⊢ 𝑆 = (𝐹 “ 𝐴) |
| 2 | | imasubc.h |
. . 3
⊢ 𝐻 = (Hom ‘𝐷) |
| 3 | | imasubc.k |
. . 3
⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪
𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) |
| 4 | | imassc.f |
. . 3
⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 5 | | eqid 2734 |
. . 3
⊢
(Homf ‘𝐸) = (Homf ‘𝐸) |
| 6 | 1, 2, 3, 4, 5 | imassc 48963 |
. 2
⊢ (𝜑 → 𝐾 ⊆cat
(Homf ‘𝐸)) |
| 7 | 4 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐹(𝐷 Func 𝐸)𝐺) |
| 8 | | eqid 2734 |
. . . . 5
⊢
(Id‘𝐸) =
(Id‘𝐸) |
| 9 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ 𝑆) |
| 10 | 1, 2, 3, 7, 8, 9 | imaid 48964 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎)) |
| 11 | 4 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝐹(𝐷 Func 𝐸)𝐺) |
| 12 | | eqid 2734 |
. . . . . . 7
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 13 | | eqid 2734 |
. . . . . . 7
⊢
(Base‘𝐸) =
(Base‘𝐸) |
| 14 | | eqid 2734 |
. . . . . . 7
⊢
(comp‘𝐸) =
(comp‘𝐸) |
| 15 | 12, 13, 4 | funcf1 17866 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:(Base‘𝐷)⟶(Base‘𝐸)) |
| 16 | | imasubc3.f |
. . . . . . . . 9
⊢ (𝜑 → Fun ◡𝐹) |
| 17 | | df-f1 6533 |
. . . . . . . . 9
⊢ (𝐹:(Base‘𝐷)–1-1→(Base‘𝐸) ↔ (𝐹:(Base‘𝐷)⟶(Base‘𝐸) ∧ Fun ◡𝐹)) |
| 18 | 15, 16, 17 | sylanbrc 583 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:(Base‘𝐷)–1-1→(Base‘𝐸)) |
| 19 | 18 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝐹:(Base‘𝐷)–1-1→(Base‘𝐸)) |
| 20 | | simpllr 775 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑎 ∈ 𝑆) |
| 21 | | simplrl 776 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑏 ∈ 𝑆) |
| 22 | | simplrr 777 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑐 ∈ 𝑆) |
| 23 | | simprl 770 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑓 ∈ (𝑎𝐾𝑏)) |
| 24 | | simprr 772 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑔 ∈ (𝑏𝐾𝑐)) |
| 25 | 1, 2, 3, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24 | imaf1co 48965 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑔(〈𝑎, 𝑏〉(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐)) |
| 26 | 25 | ralrimivva 3185 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) → ∀𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(〈𝑎, 𝑏〉(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐)) |
| 27 | 26 | ralrimivva 3185 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ∀𝑏 ∈ 𝑆 ∀𝑐 ∈ 𝑆 ∀𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(〈𝑎, 𝑏〉(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐)) |
| 28 | 10, 27 | jca 511 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏 ∈ 𝑆 ∀𝑐 ∈ 𝑆 ∀𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(〈𝑎, 𝑏〉(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐))) |
| 29 | 28 | ralrimiva 3130 |
. 2
⊢ (𝜑 → ∀𝑎 ∈ 𝑆 (((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏 ∈ 𝑆 ∀𝑐 ∈ 𝑆 ∀𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(〈𝑎, 𝑏〉(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐))) |
| 30 | 4 | funcrcl3 48938 |
. . 3
⊢ (𝜑 → 𝐸 ∈ Cat) |
| 31 | | relfunc 17862 |
. . . . . 6
⊢ Rel
(𝐷 Func 𝐸) |
| 32 | 31 | brrelex1i 5708 |
. . . . 5
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → 𝐹 ∈ V) |
| 33 | 4, 32 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ V) |
| 34 | 33, 33, 3 | imasubclem2 48957 |
. . 3
⊢ (𝜑 → 𝐾 Fn (𝑆 × 𝑆)) |
| 35 | 5, 8, 14, 30, 34 | issubc2 17836 |
. 2
⊢ (𝜑 → (𝐾 ∈ (Subcat‘𝐸) ↔ (𝐾 ⊆cat
(Homf ‘𝐸) ∧ ∀𝑎 ∈ 𝑆 (((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏 ∈ 𝑆 ∀𝑐 ∈ 𝑆 ∀𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(〈𝑎, 𝑏〉(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐))))) |
| 36 | 6, 29, 35 | mpbir2and 713 |
1
⊢ (𝜑 → 𝐾 ∈ (Subcat‘𝐸)) |