Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasubc3 Structured version   Visualization version   GIF version

Theorem imasubc3 48966
Description: An image of a functor injective on objects is a subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc.s 𝑆 = (𝐹𝐴)
imasubc.h 𝐻 = (Hom ‘𝐷)
imasubc.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
imassc.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
imasubc3.f (𝜑 → Fun 𝐹)
Assertion
Ref Expression
imasubc3 (𝜑𝐾 ∈ (Subcat‘𝐸))
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝐸,𝑝   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imasubc3
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasubc.s . . 3 𝑆 = (𝐹𝐴)
2 imasubc.h . . 3 𝐻 = (Hom ‘𝐷)
3 imasubc.k . . 3 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
4 imassc.f . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
5 eqid 2734 . . 3 (Homf𝐸) = (Homf𝐸)
61, 2, 3, 4, 5imassc 48963 . 2 (𝜑𝐾cat (Homf𝐸))
74adantr 480 . . . . 5 ((𝜑𝑎𝑆) → 𝐹(𝐷 Func 𝐸)𝐺)
8 eqid 2734 . . . . 5 (Id‘𝐸) = (Id‘𝐸)
9 simpr 484 . . . . 5 ((𝜑𝑎𝑆) → 𝑎𝑆)
101, 2, 3, 7, 8, 9imaid 48964 . . . 4 ((𝜑𝑎𝑆) → ((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎))
114ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝐹(𝐷 Func 𝐸)𝐺)
12 eqid 2734 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
13 eqid 2734 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
14 eqid 2734 . . . . . . 7 (comp‘𝐸) = (comp‘𝐸)
1512, 13, 4funcf1 17866 . . . . . . . . 9 (𝜑𝐹:(Base‘𝐷)⟶(Base‘𝐸))
16 imasubc3.f . . . . . . . . 9 (𝜑 → Fun 𝐹)
17 df-f1 6533 . . . . . . . . 9 (𝐹:(Base‘𝐷)–1-1→(Base‘𝐸) ↔ (𝐹:(Base‘𝐷)⟶(Base‘𝐸) ∧ Fun 𝐹))
1815, 16, 17sylanbrc 583 . . . . . . . 8 (𝜑𝐹:(Base‘𝐷)–1-1→(Base‘𝐸))
1918ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝐹:(Base‘𝐷)–1-1→(Base‘𝐸))
20 simpllr 775 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑎𝑆)
21 simplrl 776 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑏𝑆)
22 simplrr 777 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑐𝑆)
23 simprl 770 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑓 ∈ (𝑎𝐾𝑏))
24 simprr 772 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑔 ∈ (𝑏𝐾𝑐))
251, 2, 3, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24imaf1co 48965 . . . . . 6 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
2625ralrimivva 3185 . . . . 5 (((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) → ∀𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
2726ralrimivva 3185 . . . 4 ((𝜑𝑎𝑆) → ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
2810, 27jca 511 . . 3 ((𝜑𝑎𝑆) → (((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))
2928ralrimiva 3130 . 2 (𝜑 → ∀𝑎𝑆 (((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))
304funcrcl3 48938 . . 3 (𝜑𝐸 ∈ Cat)
31 relfunc 17862 . . . . . 6 Rel (𝐷 Func 𝐸)
3231brrelex1i 5708 . . . . 5 (𝐹(𝐷 Func 𝐸)𝐺𝐹 ∈ V)
334, 32syl 17 . . . 4 (𝜑𝐹 ∈ V)
3433, 33, 3imasubclem2 48957 . . 3 (𝜑𝐾 Fn (𝑆 × 𝑆))
355, 8, 14, 30, 34issubc2 17836 . 2 (𝜑 → (𝐾 ∈ (Subcat‘𝐸) ↔ (𝐾cat (Homf𝐸) ∧ ∀𝑎𝑆 (((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))))
366, 29, 35mpbir2and 713 1 (𝜑𝐾 ∈ (Subcat‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  Vcvv 3457  {csn 4599  cop 4605   ciun 4965   class class class wbr 5117   × cxp 5650  ccnv 5651  cima 5655  Fun wfun 6522  wf 6524  1-1wf1 6525  cfv 6528  (class class class)co 7400  cmpo 7402  Basecbs 17215  Hom chom 17269  compcco 17270  Idccid 17664  Homf chomf 17665  cat cssc 17807  Subcatcsubc 17809   Func cfunc 17854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-map 8837  df-pm 8838  df-ixp 8907  df-cat 17667  df-cid 17668  df-homf 17669  df-ssc 17810  df-subc 17812  df-func 17858
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator