Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasubc3 Structured version   Visualization version   GIF version

Theorem imasubc3 49151
Description: An image of a functor injective on objects is a subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc.s 𝑆 = (𝐹𝐴)
imasubc.h 𝐻 = (Hom ‘𝐷)
imasubc.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
imassc.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
imasubc3.f (𝜑 → Fun 𝐹)
Assertion
Ref Expression
imasubc3 (𝜑𝐾 ∈ (Subcat‘𝐸))
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝐸,𝑝   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imasubc3
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasubc.s . . 3 𝑆 = (𝐹𝐴)
2 imasubc.h . . 3 𝐻 = (Hom ‘𝐷)
3 imasubc.k . . 3 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
4 imassc.f . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
5 eqid 2729 . . 3 (Homf𝐸) = (Homf𝐸)
61, 2, 3, 4, 5imassc 49148 . 2 (𝜑𝐾cat (Homf𝐸))
74adantr 480 . . . . 5 ((𝜑𝑎𝑆) → 𝐹(𝐷 Func 𝐸)𝐺)
8 eqid 2729 . . . . 5 (Id‘𝐸) = (Id‘𝐸)
9 simpr 484 . . . . 5 ((𝜑𝑎𝑆) → 𝑎𝑆)
101, 2, 3, 7, 8, 9imaid 49149 . . . 4 ((𝜑𝑎𝑆) → ((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎))
114ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝐹(𝐷 Func 𝐸)𝐺)
12 eqid 2729 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
13 eqid 2729 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
14 eqid 2729 . . . . . . 7 (comp‘𝐸) = (comp‘𝐸)
1512, 13, 4funcf1 17773 . . . . . . . . 9 (𝜑𝐹:(Base‘𝐷)⟶(Base‘𝐸))
16 imasubc3.f . . . . . . . . 9 (𝜑 → Fun 𝐹)
17 df-f1 6487 . . . . . . . . 9 (𝐹:(Base‘𝐷)–1-1→(Base‘𝐸) ↔ (𝐹:(Base‘𝐷)⟶(Base‘𝐸) ∧ Fun 𝐹))
1815, 16, 17sylanbrc 583 . . . . . . . 8 (𝜑𝐹:(Base‘𝐷)–1-1→(Base‘𝐸))
1918ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝐹:(Base‘𝐷)–1-1→(Base‘𝐸))
20 simpllr 775 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑎𝑆)
21 simplrl 776 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑏𝑆)
22 simplrr 777 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑐𝑆)
23 simprl 770 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑓 ∈ (𝑎𝐾𝑏))
24 simprr 772 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → 𝑔 ∈ (𝑏𝐾𝑐))
251, 2, 3, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24imaf1co 49150 . . . . . 6 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐾𝑏) ∧ 𝑔 ∈ (𝑏𝐾𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
2625ralrimivva 3172 . . . . 5 (((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) → ∀𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
2726ralrimivva 3172 . . . 4 ((𝜑𝑎𝑆) → ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐))
2810, 27jca 511 . . 3 ((𝜑𝑎𝑆) → (((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))
2928ralrimiva 3121 . 2 (𝜑 → ∀𝑎𝑆 (((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))
304funcrcl3 49075 . . 3 (𝜑𝐸 ∈ Cat)
31 relfunc 17769 . . . . . 6 Rel (𝐷 Func 𝐸)
3231brrelex1i 5675 . . . . 5 (𝐹(𝐷 Func 𝐸)𝐺𝐹 ∈ V)
334, 32syl 17 . . . 4 (𝜑𝐹 ∈ V)
3433, 33, 3imasubclem2 49100 . . 3 (𝜑𝐾 Fn (𝑆 × 𝑆))
355, 8, 14, 30, 34issubc2 17743 . 2 (𝜑 → (𝐾 ∈ (Subcat‘𝐸) ↔ (𝐾cat (Homf𝐸) ∧ ∀𝑎𝑆 (((Id‘𝐸)‘𝑎) ∈ (𝑎𝐾𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐾𝑏)∀𝑔 ∈ (𝑏𝐾𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐸)𝑐)𝑓) ∈ (𝑎𝐾𝑐)))))
366, 29, 35mpbir2and 713 1 (𝜑𝐾 ∈ (Subcat‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  {csn 4577  cop 4583   ciun 4941   class class class wbr 5092   × cxp 5617  ccnv 5618  cima 5622  Fun wfun 6476  wf 6478  1-1wf1 6479  cfv 6482  (class class class)co 7349  cmpo 7351  Basecbs 17120  Hom chom 17172  compcco 17173  Idccid 17571  Homf chomf 17572  cat cssc 17714  Subcatcsubc 17716   Func cfunc 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-pm 8756  df-ixp 8825  df-cat 17574  df-cid 17575  df-homf 17576  df-ssc 17717  df-subc 17719  df-func 17765
This theorem is referenced by:  idsubc  49155
  Copyright terms: Public domain W3C validator