Proof of Theorem imasubc3lem2
| Step | Hyp | Ref
| Expression |
| 1 | | imasubc3lem2.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| 2 | | imasubc3lem1.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| 3 | | imasubc3lem2.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| 4 | | imasubc3lem2.k |
. . . 4
⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪
𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) |
| 5 | 1, 1, 2, 3, 4 | imasubclem3 48958 |
. . 3
⊢ (𝜑 → (𝑋𝐾𝑌) = ∪
𝑝 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐹 “ {𝑌}))((𝐺‘𝑝) “ (𝐻‘𝑝))) |
| 6 | | imasubc3lem1.s |
. . . . . . . 8
⊢ 𝑆 = (𝐹 “ 𝐴) |
| 7 | | imasubc3lem1.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐵–1-1→𝐶) |
| 8 | 6, 7, 2 | imasubc3lem1 48959 |
. . . . . . 7
⊢ (𝜑 → ({(◡𝐹‘𝑋)} = (◡𝐹 “ {𝑋}) ∧ (𝐹‘(◡𝐹‘𝑋)) = 𝑋 ∧ (◡𝐹‘𝑋) ∈ 𝐵)) |
| 9 | 8 | simp1d 1142 |
. . . . . 6
⊢ (𝜑 → {(◡𝐹‘𝑋)} = (◡𝐹 “ {𝑋})) |
| 10 | 6, 7, 3 | imasubc3lem1 48959 |
. . . . . . 7
⊢ (𝜑 → ({(◡𝐹‘𝑌)} = (◡𝐹 “ {𝑌}) ∧ (𝐹‘(◡𝐹‘𝑌)) = 𝑌 ∧ (◡𝐹‘𝑌) ∈ 𝐵)) |
| 11 | 10 | simp1d 1142 |
. . . . . 6
⊢ (𝜑 → {(◡𝐹‘𝑌)} = (◡𝐹 “ {𝑌})) |
| 12 | 9, 11 | xpeq12d 5683 |
. . . . 5
⊢ (𝜑 → ({(◡𝐹‘𝑋)} × {(◡𝐹‘𝑌)}) = ((◡𝐹 “ {𝑋}) × (◡𝐹 “ {𝑌}))) |
| 13 | | fvex 6886 |
. . . . . 6
⊢ (◡𝐹‘𝑋) ∈ V |
| 14 | | fvex 6886 |
. . . . . 6
⊢ (◡𝐹‘𝑌) ∈ V |
| 15 | 13, 14 | xpsn 7128 |
. . . . 5
⊢ ({(◡𝐹‘𝑋)} × {(◡𝐹‘𝑌)}) = {〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉} |
| 16 | 12, 15 | eqtr3di 2784 |
. . . 4
⊢ (𝜑 → ((◡𝐹 “ {𝑋}) × (◡𝐹 “ {𝑌})) = {〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉}) |
| 17 | 16 | iuneq1d 4993 |
. . 3
⊢ (𝜑 → ∪ 𝑝 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐹 “ {𝑌}))((𝐺‘𝑝) “ (𝐻‘𝑝)) = ∪
𝑝 ∈ {〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉} ((𝐺‘𝑝) “ (𝐻‘𝑝))) |
| 18 | 5, 17 | eqtrd 2769 |
. 2
⊢ (𝜑 → (𝑋𝐾𝑌) = ∪
𝑝 ∈ {〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉} ((𝐺‘𝑝) “ (𝐻‘𝑝))) |
| 19 | | opex 5437 |
. . 3
⊢
〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉 ∈ V |
| 20 | | fveq2 6873 |
. . . . 5
⊢ (𝑝 = 〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉 → (𝐺‘𝑝) = (𝐺‘〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉)) |
| 21 | | df-ov 7403 |
. . . . 5
⊢ ((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌)) = (𝐺‘〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉) |
| 22 | 20, 21 | eqtr4di 2787 |
. . . 4
⊢ (𝑝 = 〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉 → (𝐺‘𝑝) = ((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌))) |
| 23 | | fveq2 6873 |
. . . . 5
⊢ (𝑝 = 〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉 → (𝐻‘𝑝) = (𝐻‘〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉)) |
| 24 | | df-ov 7403 |
. . . . 5
⊢ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌)) = (𝐻‘〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉) |
| 25 | 23, 24 | eqtr4di 2787 |
. . . 4
⊢ (𝑝 = 〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉 → (𝐻‘𝑝) = ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) |
| 26 | 22, 25 | imaeq12d 6046 |
. . 3
⊢ (𝑝 = 〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉 → ((𝐺‘𝑝) “ (𝐻‘𝑝)) = (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌)) “ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌)))) |
| 27 | 19, 26 | iunxsn 5065 |
. 2
⊢ ∪ 𝑝 ∈ {〈(◡𝐹‘𝑋), (◡𝐹‘𝑌)〉} ((𝐺‘𝑝) “ (𝐻‘𝑝)) = (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌)) “ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌))) |
| 28 | 18, 27 | eqtrdi 2785 |
1
⊢ (𝜑 → (𝑋𝐾𝑌) = (((◡𝐹‘𝑋)𝐺(◡𝐹‘𝑌)) “ ((◡𝐹‘𝑋)𝐻(◡𝐹‘𝑌)))) |