Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasubc3lem2 Structured version   Visualization version   GIF version

Theorem imasubc3lem2 48960
Description: Lemma for imasubc3 48966. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc3lem1.s 𝑆 = (𝐹𝐴)
imasubc3lem1.f (𝜑𝐹:𝐵1-1𝐶)
imasubc3lem1.x (𝜑𝑋𝑆)
imasubc3lem2.y (𝜑𝑌𝑆)
imasubc3lem2.f (𝜑𝐹𝑉)
imasubc3lem2.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
Assertion
Ref Expression
imasubc3lem2 (𝜑 → (𝑋𝐾𝑌) = (((𝐹𝑋)𝐺(𝐹𝑌)) “ ((𝐹𝑋)𝐻(𝐹𝑌))))
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝑋,𝑝,𝑥,𝑦   𝑌,𝑝,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐵(𝑥,𝑦,𝑝)   𝐶(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐾(𝑥,𝑦,𝑝)   𝑉(𝑥,𝑦,𝑝)

Proof of Theorem imasubc3lem2
StepHypRef Expression
1 imasubc3lem2.f . . . 4 (𝜑𝐹𝑉)
2 imasubc3lem1.x . . . 4 (𝜑𝑋𝑆)
3 imasubc3lem2.y . . . 4 (𝜑𝑌𝑆)
4 imasubc3lem2.k . . . 4 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
51, 1, 2, 3, 4imasubclem3 48958 . . 3 (𝜑 → (𝑋𝐾𝑌) = 𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑌}))((𝐺𝑝) “ (𝐻𝑝)))
6 imasubc3lem1.s . . . . . . . 8 𝑆 = (𝐹𝐴)
7 imasubc3lem1.f . . . . . . . 8 (𝜑𝐹:𝐵1-1𝐶)
86, 7, 2imasubc3lem1 48959 . . . . . . 7 (𝜑 → ({(𝐹𝑋)} = (𝐹 “ {𝑋}) ∧ (𝐹‘(𝐹𝑋)) = 𝑋 ∧ (𝐹𝑋) ∈ 𝐵))
98simp1d 1142 . . . . . 6 (𝜑 → {(𝐹𝑋)} = (𝐹 “ {𝑋}))
106, 7, 3imasubc3lem1 48959 . . . . . . 7 (𝜑 → ({(𝐹𝑌)} = (𝐹 “ {𝑌}) ∧ (𝐹‘(𝐹𝑌)) = 𝑌 ∧ (𝐹𝑌) ∈ 𝐵))
1110simp1d 1142 . . . . . 6 (𝜑 → {(𝐹𝑌)} = (𝐹 “ {𝑌}))
129, 11xpeq12d 5683 . . . . 5 (𝜑 → ({(𝐹𝑋)} × {(𝐹𝑌)}) = ((𝐹 “ {𝑋}) × (𝐹 “ {𝑌})))
13 fvex 6886 . . . . . 6 (𝐹𝑋) ∈ V
14 fvex 6886 . . . . . 6 (𝐹𝑌) ∈ V
1513, 14xpsn 7128 . . . . 5 ({(𝐹𝑋)} × {(𝐹𝑌)}) = {⟨(𝐹𝑋), (𝐹𝑌)⟩}
1612, 15eqtr3di 2784 . . . 4 (𝜑 → ((𝐹 “ {𝑋}) × (𝐹 “ {𝑌})) = {⟨(𝐹𝑋), (𝐹𝑌)⟩})
1716iuneq1d 4993 . . 3 (𝜑 𝑝 ∈ ((𝐹 “ {𝑋}) × (𝐹 “ {𝑌}))((𝐺𝑝) “ (𝐻𝑝)) = 𝑝 ∈ {⟨(𝐹𝑋), (𝐹𝑌)⟩} ((𝐺𝑝) “ (𝐻𝑝)))
185, 17eqtrd 2769 . 2 (𝜑 → (𝑋𝐾𝑌) = 𝑝 ∈ {⟨(𝐹𝑋), (𝐹𝑌)⟩} ((𝐺𝑝) “ (𝐻𝑝)))
19 opex 5437 . . 3 ⟨(𝐹𝑋), (𝐹𝑌)⟩ ∈ V
20 fveq2 6873 . . . . 5 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → (𝐺𝑝) = (𝐺‘⟨(𝐹𝑋), (𝐹𝑌)⟩))
21 df-ov 7403 . . . . 5 ((𝐹𝑋)𝐺(𝐹𝑌)) = (𝐺‘⟨(𝐹𝑋), (𝐹𝑌)⟩)
2220, 21eqtr4di 2787 . . . 4 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → (𝐺𝑝) = ((𝐹𝑋)𝐺(𝐹𝑌)))
23 fveq2 6873 . . . . 5 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → (𝐻𝑝) = (𝐻‘⟨(𝐹𝑋), (𝐹𝑌)⟩))
24 df-ov 7403 . . . . 5 ((𝐹𝑋)𝐻(𝐹𝑌)) = (𝐻‘⟨(𝐹𝑋), (𝐹𝑌)⟩)
2523, 24eqtr4di 2787 . . . 4 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → (𝐻𝑝) = ((𝐹𝑋)𝐻(𝐹𝑌)))
2622, 25imaeq12d 6046 . . 3 (𝑝 = ⟨(𝐹𝑋), (𝐹𝑌)⟩ → ((𝐺𝑝) “ (𝐻𝑝)) = (((𝐹𝑋)𝐺(𝐹𝑌)) “ ((𝐹𝑋)𝐻(𝐹𝑌))))
2719, 26iunxsn 5065 . 2 𝑝 ∈ {⟨(𝐹𝑋), (𝐹𝑌)⟩} ((𝐺𝑝) “ (𝐻𝑝)) = (((𝐹𝑋)𝐺(𝐹𝑌)) “ ((𝐹𝑋)𝐻(𝐹𝑌)))
2818, 27eqtrdi 2785 1 (𝜑 → (𝑋𝐾𝑌) = (((𝐹𝑋)𝐺(𝐹𝑌)) “ ((𝐹𝑋)𝐻(𝐹𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {csn 4599  cop 4605   ciun 4965   × cxp 5650  ccnv 5651  cima 5655  1-1wf1 6525  cfv 6528  (class class class)co 7400  cmpo 7402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405
This theorem is referenced by:  imaf1co  48965
  Copyright terms: Public domain W3C validator