MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolioo Structured version   Visualization version   GIF version

Theorem ovolioo 25318
Description: The measure of an open interval. (Contributed by Mario Carneiro, 2-Sep-2014.)
Assertion
Ref Expression
ovolioo ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴(,)𝐵)) = (𝐵𝐴))

Proof of Theorem ovolioo
StepHypRef Expression
1 ioombl 25315 . . 3 (𝐴(,)𝐵) ∈ dom vol
2 mblvol 25280 . . 3 ((𝐴(,)𝐵) ∈ dom vol → (vol‘(𝐴(,)𝐵)) = (vol*‘(𝐴(,)𝐵)))
31, 2ax-mp 5 . 2 (vol‘(𝐴(,)𝐵)) = (vol*‘(𝐴(,)𝐵))
4 iccmbl 25316 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol)
5 mblvol 25280 . . . . 5 ((𝐴[,]𝐵) ∈ dom vol → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵)))
64, 5syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵)))
763adant3 1131 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵)))
81a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴(,)𝐵) ∈ dom vol)
9 prssi 4824 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ)
1093adant3 1131 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → {𝐴, 𝐵} ⊆ ℝ)
11 prfi 9325 . . . . . . 7 {𝐴, 𝐵} ∈ Fin
12 ovolfi 25244 . . . . . . 7 (({𝐴, 𝐵} ∈ Fin ∧ {𝐴, 𝐵} ⊆ ℝ) → (vol*‘{𝐴, 𝐵}) = 0)
1311, 10, 12sylancr 586 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘{𝐴, 𝐵}) = 0)
14 nulmbl 25285 . . . . . 6 (({𝐴, 𝐵} ⊆ ℝ ∧ (vol*‘{𝐴, 𝐵}) = 0) → {𝐴, 𝐵} ∈ dom vol)
1510, 13, 14syl2anc 583 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → {𝐴, 𝐵} ∈ dom vol)
16 df-pr 4631 . . . . . . . 8 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
1716ineq2i 4209 . . . . . . 7 ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ((𝐴(,)𝐵) ∩ ({𝐴} ∪ {𝐵}))
18 indi 4273 . . . . . . 7 ((𝐴(,)𝐵) ∩ ({𝐴} ∪ {𝐵})) = (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵}))
1917, 18eqtri 2759 . . . . . 6 ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵}))
20 simp1 1135 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ∈ ℝ)
2120ltnrd 11353 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ¬ 𝐴 < 𝐴)
22 eliooord 13388 . . . . . . . . . . 11 (𝐴 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐴𝐴 < 𝐵))
2322simpld 494 . . . . . . . . . 10 (𝐴 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐴)
2421, 23nsyl 140 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ¬ 𝐴 ∈ (𝐴(,)𝐵))
25 disjsn 4715 . . . . . . . . 9 (((𝐴(,)𝐵) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ (𝐴(,)𝐵))
2624, 25sylibr 233 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((𝐴(,)𝐵) ∩ {𝐴}) = ∅)
27 simp2 1136 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ)
2827ltnrd 11353 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ¬ 𝐵 < 𝐵)
29 eliooord 13388 . . . . . . . . . . 11 (𝐵 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐵𝐵 < 𝐵))
3029simprd 495 . . . . . . . . . 10 (𝐵 ∈ (𝐴(,)𝐵) → 𝐵 < 𝐵)
3128, 30nsyl 140 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ¬ 𝐵 ∈ (𝐴(,)𝐵))
32 disjsn 4715 . . . . . . . . 9 (((𝐴(,)𝐵) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (𝐴(,)𝐵))
3331, 32sylibr 233 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((𝐴(,)𝐵) ∩ {𝐵}) = ∅)
3426, 33uneq12d 4164 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵})) = (∅ ∪ ∅))
35 un0 4390 . . . . . . 7 (∅ ∪ ∅) = ∅
3634, 35eqtrdi 2787 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵})) = ∅)
3719, 36eqtrid 2783 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅)
38 ioossicc 13415 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
39 iccssre 13411 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
40393adant3 1131 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴[,]𝐵) ⊆ ℝ)
41 ovolicc 25273 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵𝐴))
4227, 20resubcld 11647 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐵𝐴) ∈ ℝ)
4341, 42eqeltrd 2832 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴[,]𝐵)) ∈ ℝ)
44 ovolsscl 25236 . . . . . . 7 (((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (vol*‘(𝐴[,]𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ)
4538, 40, 43, 44mp3an2i 1465 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ)
463, 45eqeltrid 2836 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
47 mblvol 25280 . . . . . . . 8 ({𝐴, 𝐵} ∈ dom vol → (vol‘{𝐴, 𝐵}) = (vol*‘{𝐴, 𝐵}))
4815, 47syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘{𝐴, 𝐵}) = (vol*‘{𝐴, 𝐵}))
4948, 13eqtrd 2771 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘{𝐴, 𝐵}) = 0)
50 0re 11221 . . . . . 6 0 ∈ ℝ
5149, 50eqeltrdi 2840 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘{𝐴, 𝐵}) ∈ ℝ)
52 volun 25295 . . . . 5 ((((𝐴(,)𝐵) ∈ dom vol ∧ {𝐴, 𝐵} ∈ dom vol ∧ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅) ∧ ((vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ (vol‘{𝐴, 𝐵}) ∈ ℝ)) → (vol‘((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵})))
538, 15, 37, 46, 51, 52syl32anc 1377 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵})))
54 rexr 11265 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
55 rexr 11265 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
56 id 22 . . . . . 6 (𝐴𝐵𝐴𝐵)
57 prunioo 13463 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
5854, 55, 56, 57syl3an 1159 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
5958fveq2d 6895 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) = (vol‘(𝐴[,]𝐵)))
6049oveq2d 7428 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵})) = ((vol‘(𝐴(,)𝐵)) + 0))
6146recnd 11247 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) ∈ ℂ)
6261addridd 11419 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((vol‘(𝐴(,)𝐵)) + 0) = (vol‘(𝐴(,)𝐵)))
6360, 62eqtrd 2771 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵})) = (vol‘(𝐴(,)𝐵)))
6453, 59, 633eqtr3d 2779 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴(,)𝐵)))
657, 64, 413eqtr3d 2779 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
663, 65eqtr3id 2785 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴(,)𝐵)) = (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  cun 3946  cin 3947  wss 3948  c0 4322  {csn 4628  {cpr 4630   class class class wbr 5148  dom cdm 5676  cfv 6543  (class class class)co 7412  Fincfn 8942  cr 11112  0cc0 11113   + caddc 11116  *cxr 11252   < clt 11253  cle 11254  cmin 11449  (,)cioo 13329  [,]cicc 13332  vol*covol 25212  volcvol 25213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-inf2 9639  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7673  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-2o 8470  df-er 8706  df-map 8825  df-pm 8826  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-fi 9409  df-sup 9440  df-inf 9441  df-oi 9508  df-dju 9899  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-z 12564  df-uz 12828  df-q 12938  df-rp 12980  df-xneg 13097  df-xadd 13098  df-xmul 13099  df-ioo 13333  df-ico 13335  df-icc 13336  df-fz 13490  df-fzo 13633  df-fl 13762  df-seq 13972  df-exp 14033  df-hash 14296  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437  df-rlim 15438  df-sum 15638  df-rest 17373  df-topgen 17394  df-psmet 21137  df-xmet 21138  df-met 21139  df-bl 21140  df-mopn 21141  df-top 22617  df-topon 22634  df-bases 22670  df-cmp 23112  df-ovol 25214  df-vol 25215
This theorem is referenced by:  volioo  25319  ioovolcl  25320  ovolfs2  25321  ioorcl2  25322  uniioovol  25329  uniioombllem2  25333  uniioombllem3a  25334  uniioombllem4  25336  uniioombllem6  25338  ftc1lem4  25792  itg2gt0cn  36847  ftc1cnnclem  36863  ftc1anclem7  36871
  Copyright terms: Public domain W3C validator