MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolioo Structured version   Visualization version   GIF version

Theorem ovolioo 25617
Description: The measure of an open interval. (Contributed by Mario Carneiro, 2-Sep-2014.)
Assertion
Ref Expression
ovolioo ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴(,)𝐵)) = (𝐵𝐴))

Proof of Theorem ovolioo
StepHypRef Expression
1 ioombl 25614 . . 3 (𝐴(,)𝐵) ∈ dom vol
2 mblvol 25579 . . 3 ((𝐴(,)𝐵) ∈ dom vol → (vol‘(𝐴(,)𝐵)) = (vol*‘(𝐴(,)𝐵)))
31, 2ax-mp 5 . 2 (vol‘(𝐴(,)𝐵)) = (vol*‘(𝐴(,)𝐵))
4 iccmbl 25615 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol)
5 mblvol 25579 . . . . 5 ((𝐴[,]𝐵) ∈ dom vol → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵)))
64, 5syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵)))
763adant3 1131 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵)))
81a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴(,)𝐵) ∈ dom vol)
9 prssi 4826 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ)
1093adant3 1131 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → {𝐴, 𝐵} ⊆ ℝ)
11 prfi 9361 . . . . . . 7 {𝐴, 𝐵} ∈ Fin
12 ovolfi 25543 . . . . . . 7 (({𝐴, 𝐵} ∈ Fin ∧ {𝐴, 𝐵} ⊆ ℝ) → (vol*‘{𝐴, 𝐵}) = 0)
1311, 10, 12sylancr 587 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘{𝐴, 𝐵}) = 0)
14 nulmbl 25584 . . . . . 6 (({𝐴, 𝐵} ⊆ ℝ ∧ (vol*‘{𝐴, 𝐵}) = 0) → {𝐴, 𝐵} ∈ dom vol)
1510, 13, 14syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → {𝐴, 𝐵} ∈ dom vol)
16 df-pr 4634 . . . . . . . 8 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
1716ineq2i 4225 . . . . . . 7 ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ((𝐴(,)𝐵) ∩ ({𝐴} ∪ {𝐵}))
18 indi 4290 . . . . . . 7 ((𝐴(,)𝐵) ∩ ({𝐴} ∪ {𝐵})) = (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵}))
1917, 18eqtri 2763 . . . . . 6 ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵}))
20 simp1 1135 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ∈ ℝ)
2120ltnrd 11393 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ¬ 𝐴 < 𝐴)
22 eliooord 13443 . . . . . . . . . . 11 (𝐴 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐴𝐴 < 𝐵))
2322simpld 494 . . . . . . . . . 10 (𝐴 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐴)
2421, 23nsyl 140 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ¬ 𝐴 ∈ (𝐴(,)𝐵))
25 disjsn 4716 . . . . . . . . 9 (((𝐴(,)𝐵) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ (𝐴(,)𝐵))
2624, 25sylibr 234 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((𝐴(,)𝐵) ∩ {𝐴}) = ∅)
27 simp2 1136 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ)
2827ltnrd 11393 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ¬ 𝐵 < 𝐵)
29 eliooord 13443 . . . . . . . . . . 11 (𝐵 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐵𝐵 < 𝐵))
3029simprd 495 . . . . . . . . . 10 (𝐵 ∈ (𝐴(,)𝐵) → 𝐵 < 𝐵)
3128, 30nsyl 140 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ¬ 𝐵 ∈ (𝐴(,)𝐵))
32 disjsn 4716 . . . . . . . . 9 (((𝐴(,)𝐵) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (𝐴(,)𝐵))
3331, 32sylibr 234 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((𝐴(,)𝐵) ∩ {𝐵}) = ∅)
3426, 33uneq12d 4179 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵})) = (∅ ∪ ∅))
35 un0 4400 . . . . . . 7 (∅ ∪ ∅) = ∅
3634, 35eqtrdi 2791 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵})) = ∅)
3719, 36eqtrid 2787 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅)
38 ioossicc 13470 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
39 iccssre 13466 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
40393adant3 1131 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴[,]𝐵) ⊆ ℝ)
41 ovolicc 25572 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵𝐴))
4227, 20resubcld 11689 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐵𝐴) ∈ ℝ)
4341, 42eqeltrd 2839 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴[,]𝐵)) ∈ ℝ)
44 ovolsscl 25535 . . . . . . 7 (((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (vol*‘(𝐴[,]𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ)
4538, 40, 43, 44mp3an2i 1465 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ)
463, 45eqeltrid 2843 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
47 mblvol 25579 . . . . . . . 8 ({𝐴, 𝐵} ∈ dom vol → (vol‘{𝐴, 𝐵}) = (vol*‘{𝐴, 𝐵}))
4815, 47syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘{𝐴, 𝐵}) = (vol*‘{𝐴, 𝐵}))
4948, 13eqtrd 2775 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘{𝐴, 𝐵}) = 0)
50 0re 11261 . . . . . 6 0 ∈ ℝ
5149, 50eqeltrdi 2847 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘{𝐴, 𝐵}) ∈ ℝ)
52 volun 25594 . . . . 5 ((((𝐴(,)𝐵) ∈ dom vol ∧ {𝐴, 𝐵} ∈ dom vol ∧ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅) ∧ ((vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ (vol‘{𝐴, 𝐵}) ∈ ℝ)) → (vol‘((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵})))
538, 15, 37, 46, 51, 52syl32anc 1377 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵})))
54 rexr 11305 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
55 rexr 11305 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
56 id 22 . . . . . 6 (𝐴𝐵𝐴𝐵)
57 prunioo 13518 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
5854, 55, 56, 57syl3an 1159 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
5958fveq2d 6911 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) = (vol‘(𝐴[,]𝐵)))
6049oveq2d 7447 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵})) = ((vol‘(𝐴(,)𝐵)) + 0))
6146recnd 11287 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) ∈ ℂ)
6261addridd 11459 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((vol‘(𝐴(,)𝐵)) + 0) = (vol‘(𝐴(,)𝐵)))
6360, 62eqtrd 2775 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵})) = (vol‘(𝐴(,)𝐵)))
6453, 59, 633eqtr3d 2783 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴(,)𝐵)))
657, 64, 413eqtr3d 2783 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
663, 65eqtr3id 2789 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴(,)𝐵)) = (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cun 3961  cin 3962  wss 3963  c0 4339  {csn 4631  {cpr 4633   class class class wbr 5148  dom cdm 5689  cfv 6563  (class class class)co 7431  Fincfn 8984  cr 11152  0cc0 11153   + caddc 11156  *cxr 11292   < clt 11293  cle 11294  cmin 11490  (,)cioo 13384  [,]cicc 13387  vol*covol 25511  volcvol 25512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-rest 17469  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969  df-cmp 23411  df-ovol 25513  df-vol 25514
This theorem is referenced by:  volioo  25618  ioovolcl  25619  ovolfs2  25620  ioorcl2  25621  uniioovol  25628  uniioombllem2  25632  uniioombllem3a  25633  uniioombllem4  25635  uniioombllem6  25637  ftc1lem4  26095  itg2gt0cn  37662  ftc1cnnclem  37678  ftc1anclem7  37686
  Copyright terms: Public domain W3C validator