Proof of Theorem ovolioo
Step | Hyp | Ref
| Expression |
1 | | ioombl 24718 |
. . 3
⊢ (𝐴(,)𝐵) ∈ dom vol |
2 | | mblvol 24683 |
. . 3
⊢ ((𝐴(,)𝐵) ∈ dom vol → (vol‘(𝐴(,)𝐵)) = (vol*‘(𝐴(,)𝐵))) |
3 | 1, 2 | ax-mp 5 |
. 2
⊢
(vol‘(𝐴(,)𝐵)) = (vol*‘(𝐴(,)𝐵)) |
4 | | iccmbl 24719 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol) |
5 | | mblvol 24683 |
. . . . 5
⊢ ((𝐴[,]𝐵) ∈ dom vol → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵))) |
6 | 4, 5 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵))) |
7 | 6 | 3adant3 1131 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵))) |
8 | 1 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴(,)𝐵) ∈ dom vol) |
9 | | prssi 4756 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ) |
10 | 9 | 3adant3 1131 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → {𝐴, 𝐵} ⊆ ℝ) |
11 | | prfi 9078 |
. . . . . . 7
⊢ {𝐴, 𝐵} ∈ Fin |
12 | | ovolfi 24647 |
. . . . . . 7
⊢ (({𝐴, 𝐵} ∈ Fin ∧ {𝐴, 𝐵} ⊆ ℝ) → (vol*‘{𝐴, 𝐵}) = 0) |
13 | 11, 10, 12 | sylancr 587 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘{𝐴, 𝐵}) = 0) |
14 | | nulmbl 24688 |
. . . . . 6
⊢ (({𝐴, 𝐵} ⊆ ℝ ∧ (vol*‘{𝐴, 𝐵}) = 0) → {𝐴, 𝐵} ∈ dom vol) |
15 | 10, 13, 14 | syl2anc 584 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → {𝐴, 𝐵} ∈ dom vol) |
16 | | df-pr 4566 |
. . . . . . . 8
⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
17 | 16 | ineq2i 4145 |
. . . . . . 7
⊢ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ((𝐴(,)𝐵) ∩ ({𝐴} ∪ {𝐵})) |
18 | | indi 4209 |
. . . . . . 7
⊢ ((𝐴(,)𝐵) ∩ ({𝐴} ∪ {𝐵})) = (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵})) |
19 | 17, 18 | eqtri 2766 |
. . . . . 6
⊢ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵})) |
20 | | simp1 1135 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) |
21 | 20 | ltnrd 11098 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ¬ 𝐴 < 𝐴) |
22 | | eliooord 13127 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐴 ∧ 𝐴 < 𝐵)) |
23 | 22 | simpld 495 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐴) |
24 | 21, 23 | nsyl 140 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ¬ 𝐴 ∈ (𝐴(,)𝐵)) |
25 | | disjsn 4649 |
. . . . . . . . 9
⊢ (((𝐴(,)𝐵) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ (𝐴(,)𝐵)) |
26 | 24, 25 | sylibr 233 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∩ {𝐴}) = ∅) |
27 | | simp2 1136 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) |
28 | 27 | ltnrd 11098 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ¬ 𝐵 < 𝐵) |
29 | | eliooord 13127 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐵 ∧ 𝐵 < 𝐵)) |
30 | 29 | simprd 496 |
. . . . . . . . . 10
⊢ (𝐵 ∈ (𝐴(,)𝐵) → 𝐵 < 𝐵) |
31 | 28, 30 | nsyl 140 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ¬ 𝐵 ∈ (𝐴(,)𝐵)) |
32 | | disjsn 4649 |
. . . . . . . . 9
⊢ (((𝐴(,)𝐵) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (𝐴(,)𝐵)) |
33 | 31, 32 | sylibr 233 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∩ {𝐵}) = ∅) |
34 | 26, 33 | uneq12d 4099 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵})) = (∅ ∪
∅)) |
35 | | un0 4326 |
. . . . . . 7
⊢ (∅
∪ ∅) = ∅ |
36 | 34, 35 | eqtrdi 2794 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵})) = ∅) |
37 | 19, 36 | eqtrid 2790 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅) |
38 | | ioossicc 13154 |
. . . . . . 7
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
39 | | iccssre 13150 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
40 | 39 | 3adant3 1131 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴[,]𝐵) ⊆ ℝ) |
41 | | ovolicc 24676 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵 − 𝐴)) |
42 | 27, 20 | resubcld 11392 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐵 − 𝐴) ∈ ℝ) |
43 | 41, 42 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) ∈ ℝ) |
44 | | ovolsscl 24639 |
. . . . . . 7
⊢ (((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (vol*‘(𝐴[,]𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ) |
45 | 38, 40, 43, 44 | mp3an2i 1465 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ) |
46 | 3, 45 | eqeltrid 2843 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) ∈ ℝ) |
47 | | mblvol 24683 |
. . . . . . . 8
⊢ ({𝐴, 𝐵} ∈ dom vol → (vol‘{𝐴, 𝐵}) = (vol*‘{𝐴, 𝐵})) |
48 | 15, 47 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘{𝐴, 𝐵}) = (vol*‘{𝐴, 𝐵})) |
49 | 48, 13 | eqtrd 2778 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘{𝐴, 𝐵}) = 0) |
50 | | 0re 10966 |
. . . . . 6
⊢ 0 ∈
ℝ |
51 | 49, 50 | eqeltrdi 2847 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘{𝐴, 𝐵}) ∈ ℝ) |
52 | | volun 24698 |
. . . . 5
⊢ ((((𝐴(,)𝐵) ∈ dom vol ∧ {𝐴, 𝐵} ∈ dom vol ∧ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅) ∧ ((vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ (vol‘{𝐴, 𝐵}) ∈ ℝ)) →
(vol‘((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵}))) |
53 | 8, 15, 37, 46, 51, 52 | syl32anc 1377 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵}))) |
54 | | rexr 11010 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ*) |
55 | | rexr 11010 |
. . . . . 6
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℝ*) |
56 | | id 22 |
. . . . . 6
⊢ (𝐴 ≤ 𝐵 → 𝐴 ≤ 𝐵) |
57 | | prunioo 13202 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)) |
58 | 54, 55, 56, 57 | syl3an 1159 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)) |
59 | 58 | fveq2d 6772 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) = (vol‘(𝐴[,]𝐵))) |
60 | 49 | oveq2d 7285 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵})) = ((vol‘(𝐴(,)𝐵)) + 0)) |
61 | 46 | recnd 10992 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) ∈ ℂ) |
62 | 61 | addid1d 11164 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((vol‘(𝐴(,)𝐵)) + 0) = (vol‘(𝐴(,)𝐵))) |
63 | 60, 62 | eqtrd 2778 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵})) = (vol‘(𝐴(,)𝐵))) |
64 | 53, 59, 63 | 3eqtr3d 2786 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴(,)𝐵))) |
65 | 7, 64, 41 | 3eqtr3d 2786 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
66 | 3, 65 | eqtr3id 2792 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |