MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolioo Structured version   Visualization version   GIF version

Theorem ovolioo 25603
Description: The measure of an open interval. (Contributed by Mario Carneiro, 2-Sep-2014.)
Assertion
Ref Expression
ovolioo ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴(,)𝐵)) = (𝐵𝐴))

Proof of Theorem ovolioo
StepHypRef Expression
1 ioombl 25600 . . 3 (𝐴(,)𝐵) ∈ dom vol
2 mblvol 25565 . . 3 ((𝐴(,)𝐵) ∈ dom vol → (vol‘(𝐴(,)𝐵)) = (vol*‘(𝐴(,)𝐵)))
31, 2ax-mp 5 . 2 (vol‘(𝐴(,)𝐵)) = (vol*‘(𝐴(,)𝐵))
4 iccmbl 25601 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol)
5 mblvol 25565 . . . . 5 ((𝐴[,]𝐵) ∈ dom vol → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵)))
64, 5syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵)))
763adant3 1133 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵)))
81a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴(,)𝐵) ∈ dom vol)
9 prssi 4821 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ)
1093adant3 1133 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → {𝐴, 𝐵} ⊆ ℝ)
11 prfi 9363 . . . . . . 7 {𝐴, 𝐵} ∈ Fin
12 ovolfi 25529 . . . . . . 7 (({𝐴, 𝐵} ∈ Fin ∧ {𝐴, 𝐵} ⊆ ℝ) → (vol*‘{𝐴, 𝐵}) = 0)
1311, 10, 12sylancr 587 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘{𝐴, 𝐵}) = 0)
14 nulmbl 25570 . . . . . 6 (({𝐴, 𝐵} ⊆ ℝ ∧ (vol*‘{𝐴, 𝐵}) = 0) → {𝐴, 𝐵} ∈ dom vol)
1510, 13, 14syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → {𝐴, 𝐵} ∈ dom vol)
16 df-pr 4629 . . . . . . . 8 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
1716ineq2i 4217 . . . . . . 7 ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ((𝐴(,)𝐵) ∩ ({𝐴} ∪ {𝐵}))
18 indi 4284 . . . . . . 7 ((𝐴(,)𝐵) ∩ ({𝐴} ∪ {𝐵})) = (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵}))
1917, 18eqtri 2765 . . . . . 6 ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵}))
20 simp1 1137 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ∈ ℝ)
2120ltnrd 11395 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ¬ 𝐴 < 𝐴)
22 eliooord 13446 . . . . . . . . . . 11 (𝐴 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐴𝐴 < 𝐵))
2322simpld 494 . . . . . . . . . 10 (𝐴 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐴)
2421, 23nsyl 140 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ¬ 𝐴 ∈ (𝐴(,)𝐵))
25 disjsn 4711 . . . . . . . . 9 (((𝐴(,)𝐵) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ (𝐴(,)𝐵))
2624, 25sylibr 234 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((𝐴(,)𝐵) ∩ {𝐴}) = ∅)
27 simp2 1138 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ)
2827ltnrd 11395 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ¬ 𝐵 < 𝐵)
29 eliooord 13446 . . . . . . . . . . 11 (𝐵 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐵𝐵 < 𝐵))
3029simprd 495 . . . . . . . . . 10 (𝐵 ∈ (𝐴(,)𝐵) → 𝐵 < 𝐵)
3128, 30nsyl 140 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ¬ 𝐵 ∈ (𝐴(,)𝐵))
32 disjsn 4711 . . . . . . . . 9 (((𝐴(,)𝐵) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (𝐴(,)𝐵))
3331, 32sylibr 234 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((𝐴(,)𝐵) ∩ {𝐵}) = ∅)
3426, 33uneq12d 4169 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵})) = (∅ ∪ ∅))
35 un0 4394 . . . . . . 7 (∅ ∪ ∅) = ∅
3634, 35eqtrdi 2793 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (((𝐴(,)𝐵) ∩ {𝐴}) ∪ ((𝐴(,)𝐵) ∩ {𝐵})) = ∅)
3719, 36eqtrid 2789 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅)
38 ioossicc 13473 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
39 iccssre 13469 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
40393adant3 1133 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴[,]𝐵) ⊆ ℝ)
41 ovolicc 25558 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵𝐴))
4227, 20resubcld 11691 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐵𝐴) ∈ ℝ)
4341, 42eqeltrd 2841 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴[,]𝐵)) ∈ ℝ)
44 ovolsscl 25521 . . . . . . 7 (((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (vol*‘(𝐴[,]𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ)
4538, 40, 43, 44mp3an2i 1468 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ)
463, 45eqeltrid 2845 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
47 mblvol 25565 . . . . . . . 8 ({𝐴, 𝐵} ∈ dom vol → (vol‘{𝐴, 𝐵}) = (vol*‘{𝐴, 𝐵}))
4815, 47syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘{𝐴, 𝐵}) = (vol*‘{𝐴, 𝐵}))
4948, 13eqtrd 2777 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘{𝐴, 𝐵}) = 0)
50 0re 11263 . . . . . 6 0 ∈ ℝ
5149, 50eqeltrdi 2849 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘{𝐴, 𝐵}) ∈ ℝ)
52 volun 25580 . . . . 5 ((((𝐴(,)𝐵) ∈ dom vol ∧ {𝐴, 𝐵} ∈ dom vol ∧ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅) ∧ ((vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ (vol‘{𝐴, 𝐵}) ∈ ℝ)) → (vol‘((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵})))
538, 15, 37, 46, 51, 52syl32anc 1380 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵})))
54 rexr 11307 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
55 rexr 11307 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
56 id 22 . . . . . 6 (𝐴𝐵𝐴𝐵)
57 prunioo 13521 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
5854, 55, 56, 57syl3an 1161 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
5958fveq2d 6910 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) = (vol‘(𝐴[,]𝐵)))
6049oveq2d 7447 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵})) = ((vol‘(𝐴(,)𝐵)) + 0))
6146recnd 11289 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) ∈ ℂ)
6261addridd 11461 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((vol‘(𝐴(,)𝐵)) + 0) = (vol‘(𝐴(,)𝐵)))
6360, 62eqtrd 2777 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴, 𝐵})) = (vol‘(𝐴(,)𝐵)))
6453, 59, 633eqtr3d 2785 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴(,)𝐵)))
657, 64, 413eqtr3d 2785 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
663, 65eqtr3id 2791 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴(,)𝐵)) = (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  cun 3949  cin 3950  wss 3951  c0 4333  {csn 4626  {cpr 4628   class class class wbr 5143  dom cdm 5685  cfv 6561  (class class class)co 7431  Fincfn 8985  cr 11154  0cc0 11155   + caddc 11158  *cxr 11294   < clt 11295  cle 11296  cmin 11492  (,)cioo 13387  [,]cicc 13390  vol*covol 25497  volcvol 25498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-rest 17467  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cmp 23395  df-ovol 25499  df-vol 25500
This theorem is referenced by:  volioo  25604  ioovolcl  25605  ovolfs2  25606  ioorcl2  25607  uniioovol  25614  uniioombllem2  25618  uniioombllem3a  25619  uniioombllem4  25621  uniioombllem6  25623  ftc1lem4  26080  itg2gt0cn  37682  ftc1cnnclem  37698  ftc1anclem7  37706
  Copyright terms: Public domain W3C validator