| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clscld | Structured version Visualization version GIF version | ||
| Description: The closure of a subset of a topology's underlying set is closed. (Contributed by NM, 4-Oct-2006.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| clscld | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clsval 22953 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 3 | 1 | topcld 22951 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
| 4 | 3 | anim1i 615 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑋)) |
| 5 | sseq2 3961 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑋)) | |
| 6 | 5 | elrab 3647 | . . . . 5 ⊢ (𝑋 ∈ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ↔ (𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑋)) |
| 7 | 4, 6 | sylibr 234 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 ∈ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 8 | 7 | ne0d 4292 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ≠ ∅) |
| 9 | ssrab2 4030 | . . 3 ⊢ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ (Clsd‘𝐽) | |
| 10 | intcld 22956 | . . 3 ⊢ (({𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ≠ ∅ ∧ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ (Clsd‘𝐽)) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ (Clsd‘𝐽)) | |
| 11 | 8, 9, 10 | sylancl 586 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ (Clsd‘𝐽)) |
| 12 | 2, 11 | eqeltrd 2831 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 ⊆ wss 3902 ∅c0 4283 ∪ cuni 4859 ∩ cint 4897 ‘cfv 6481 Topctop 22809 Clsdccld 22932 clsccl 22934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-top 22810 df-cld 22935 df-cls 22937 |
| This theorem is referenced by: clsf 22964 clsss3 22975 iscld3 22980 clsidm 22983 restcls 23097 cncls2i 23186 nrmsep 23273 lpcls 23280 regsep2 23292 hauscmplem 23322 hausllycmp 23410 txcls 23520 ptclsg 23531 regr1lem 23655 kqreglem1 23657 kqreglem2 23658 kqnrmlem1 23659 kqnrmlem2 23660 fclscmpi 23945 tgptsmscld 24067 cnllycmp 24883 clsocv 25178 cmpcmet 25247 cncmet 25250 limcnlp 25807 clsun 36368 cldregopn 36371 heibor1lem 37855 iscnrm3rlem2 48978 iscnrm3rlem5 48981 |
| Copyright terms: Public domain | W3C validator |