| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clscld | Structured version Visualization version GIF version | ||
| Description: The closure of a subset of a topology's underlying set is closed. (Contributed by NM, 4-Oct-2006.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| clscld | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clsval 22931 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 3 | 1 | topcld 22929 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
| 4 | 3 | anim1i 615 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑋)) |
| 5 | sseq2 3976 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑋)) | |
| 6 | 5 | elrab 3662 | . . . . 5 ⊢ (𝑋 ∈ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ↔ (𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑋)) |
| 7 | 4, 6 | sylibr 234 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 ∈ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 8 | 7 | ne0d 4308 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ≠ ∅) |
| 9 | ssrab2 4046 | . . 3 ⊢ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ (Clsd‘𝐽) | |
| 10 | intcld 22934 | . . 3 ⊢ (({𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ≠ ∅ ∧ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ (Clsd‘𝐽)) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ (Clsd‘𝐽)) | |
| 11 | 8, 9, 10 | sylancl 586 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ (Clsd‘𝐽)) |
| 12 | 2, 11 | eqeltrd 2829 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {crab 3408 ⊆ wss 3917 ∅c0 4299 ∪ cuni 4874 ∩ cint 4913 ‘cfv 6514 Topctop 22787 Clsdccld 22910 clsccl 22912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-top 22788 df-cld 22913 df-cls 22915 |
| This theorem is referenced by: clsf 22942 clsss3 22953 iscld3 22958 clsidm 22961 restcls 23075 cncls2i 23164 nrmsep 23251 lpcls 23258 regsep2 23270 hauscmplem 23300 hausllycmp 23388 txcls 23498 ptclsg 23509 regr1lem 23633 kqreglem1 23635 kqreglem2 23636 kqnrmlem1 23637 kqnrmlem2 23638 fclscmpi 23923 tgptsmscld 24045 cnllycmp 24862 clsocv 25157 cmpcmet 25226 cncmet 25229 limcnlp 25786 clsun 36323 cldregopn 36326 heibor1lem 37810 iscnrm3rlem2 48933 iscnrm3rlem5 48936 |
| Copyright terms: Public domain | W3C validator |