MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clscld Structured version   Visualization version   GIF version

Theorem clscld 23042
Description: The closure of a subset of a topology's underlying set is closed. (Contributed by NM, 4-Oct-2006.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clscld ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))

Proof of Theorem clscld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 clscld.1 . . 3 𝑋 = 𝐽
21clsval 23032 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
31topcld 23030 . . . . . 6 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
43anim1i 613 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆𝑋))
5 sseq2 4006 . . . . . 6 (𝑥 = 𝑋 → (𝑆𝑥𝑆𝑋))
65elrab 3681 . . . . 5 (𝑋 ∈ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ↔ (𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆𝑋))
74, 6sylibr 233 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑋 ∈ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
87ne0d 4338 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ≠ ∅)
9 ssrab2 4076 . . 3 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ⊆ (Clsd‘𝐽)
10 intcld 23035 . . 3 (({𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ≠ ∅ ∧ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ⊆ (Clsd‘𝐽)) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ∈ (Clsd‘𝐽))
118, 9, 10sylancl 584 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ∈ (Clsd‘𝐽))
122, 11eqeltrd 2826 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wne 2930  {crab 3419  wss 3947  c0 4325   cuni 4913   cint 4954  cfv 6554  Topctop 22886  Clsdccld 23011  clsccl 23013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-top 22887  df-cld 23014  df-cls 23016
This theorem is referenced by:  clsf  23043  clsss3  23054  iscld3  23059  clsidm  23062  restcls  23176  cncls2i  23265  nrmsep  23352  lpcls  23359  regsep2  23371  hauscmplem  23401  hausllycmp  23489  txcls  23599  ptclsg  23610  regr1lem  23734  kqreglem1  23736  kqreglem2  23737  kqnrmlem1  23738  kqnrmlem2  23739  fclscmpi  24024  tgptsmscld  24146  cnllycmp  24973  clsocv  25269  cmpcmet  25338  cncmet  25341  limcnlp  25898  clsun  36040  cldregopn  36043  heibor1lem  37510  iscnrm3rlem2  48275  iscnrm3rlem5  48278
  Copyright terms: Public domain W3C validator