| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clscld | Structured version Visualization version GIF version | ||
| Description: The closure of a subset of a topology's underlying set is closed. (Contributed by NM, 4-Oct-2006.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| clscld | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clsval 22924 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 3 | 1 | topcld 22922 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
| 4 | 3 | anim1i 615 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑋)) |
| 5 | sseq2 3973 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑋)) | |
| 6 | 5 | elrab 3659 | . . . . 5 ⊢ (𝑋 ∈ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ↔ (𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑋)) |
| 7 | 4, 6 | sylibr 234 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 ∈ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 8 | 7 | ne0d 4305 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ≠ ∅) |
| 9 | ssrab2 4043 | . . 3 ⊢ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ (Clsd‘𝐽) | |
| 10 | intcld 22927 | . . 3 ⊢ (({𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ≠ ∅ ∧ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ (Clsd‘𝐽)) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ (Clsd‘𝐽)) | |
| 11 | 8, 9, 10 | sylancl 586 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ (Clsd‘𝐽)) |
| 12 | 2, 11 | eqeltrd 2828 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3405 ⊆ wss 3914 ∅c0 4296 ∪ cuni 4871 ∩ cint 4910 ‘cfv 6511 Topctop 22780 Clsdccld 22903 clsccl 22905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-top 22781 df-cld 22906 df-cls 22908 |
| This theorem is referenced by: clsf 22935 clsss3 22946 iscld3 22951 clsidm 22954 restcls 23068 cncls2i 23157 nrmsep 23244 lpcls 23251 regsep2 23263 hauscmplem 23293 hausllycmp 23381 txcls 23491 ptclsg 23502 regr1lem 23626 kqreglem1 23628 kqreglem2 23629 kqnrmlem1 23630 kqnrmlem2 23631 fclscmpi 23916 tgptsmscld 24038 cnllycmp 24855 clsocv 25150 cmpcmet 25219 cncmet 25222 limcnlp 25779 clsun 36316 cldregopn 36319 heibor1lem 37803 iscnrm3rlem2 48929 iscnrm3rlem5 48932 |
| Copyright terms: Public domain | W3C validator |