![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clscld | Structured version Visualization version GIF version |
Description: The closure of a subset of a topology's underlying set is closed. (Contributed by NM, 4-Oct-2006.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clscld | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | clsval 23032 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
3 | 1 | topcld 23030 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
4 | 3 | anim1i 613 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑋)) |
5 | sseq2 4006 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑋)) | |
6 | 5 | elrab 3681 | . . . . 5 ⊢ (𝑋 ∈ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ↔ (𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑋)) |
7 | 4, 6 | sylibr 233 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 ∈ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
8 | 7 | ne0d 4338 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ≠ ∅) |
9 | ssrab2 4076 | . . 3 ⊢ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ (Clsd‘𝐽) | |
10 | intcld 23035 | . . 3 ⊢ (({𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ≠ ∅ ∧ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ (Clsd‘𝐽)) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ (Clsd‘𝐽)) | |
11 | 8, 9, 10 | sylancl 584 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ (Clsd‘𝐽)) |
12 | 2, 11 | eqeltrd 2826 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 {crab 3419 ⊆ wss 3947 ∅c0 4325 ∪ cuni 4913 ∩ cint 4954 ‘cfv 6554 Topctop 22886 Clsdccld 23011 clsccl 23013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-top 22887 df-cld 23014 df-cls 23016 |
This theorem is referenced by: clsf 23043 clsss3 23054 iscld3 23059 clsidm 23062 restcls 23176 cncls2i 23265 nrmsep 23352 lpcls 23359 regsep2 23371 hauscmplem 23401 hausllycmp 23489 txcls 23599 ptclsg 23610 regr1lem 23734 kqreglem1 23736 kqreglem2 23737 kqnrmlem1 23738 kqnrmlem2 23739 fclscmpi 24024 tgptsmscld 24146 cnllycmp 24973 clsocv 25269 cmpcmet 25338 cncmet 25341 limcnlp 25898 clsun 36040 cldregopn 36043 heibor1lem 37510 iscnrm3rlem2 48275 iscnrm3rlem5 48278 |
Copyright terms: Public domain | W3C validator |