![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clscld | Structured version Visualization version GIF version |
Description: The closure of a subset of a topology's underlying set is closed. (Contributed by NM, 4-Oct-2006.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clscld | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | clsval 23061 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
3 | 1 | topcld 23059 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
4 | 3 | anim1i 615 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑋)) |
5 | sseq2 4022 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑋)) | |
6 | 5 | elrab 3695 | . . . . 5 ⊢ (𝑋 ∈ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ↔ (𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑋)) |
7 | 4, 6 | sylibr 234 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 ∈ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
8 | 7 | ne0d 4348 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ≠ ∅) |
9 | ssrab2 4090 | . . 3 ⊢ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ (Clsd‘𝐽) | |
10 | intcld 23064 | . . 3 ⊢ (({𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ≠ ∅ ∧ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ (Clsd‘𝐽)) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ (Clsd‘𝐽)) | |
11 | 8, 9, 10 | sylancl 586 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ∈ (Clsd‘𝐽)) |
12 | 2, 11 | eqeltrd 2839 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 {crab 3433 ⊆ wss 3963 ∅c0 4339 ∪ cuni 4912 ∩ cint 4951 ‘cfv 6563 Topctop 22915 Clsdccld 23040 clsccl 23042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-top 22916 df-cld 23043 df-cls 23045 |
This theorem is referenced by: clsf 23072 clsss3 23083 iscld3 23088 clsidm 23091 restcls 23205 cncls2i 23294 nrmsep 23381 lpcls 23388 regsep2 23400 hauscmplem 23430 hausllycmp 23518 txcls 23628 ptclsg 23639 regr1lem 23763 kqreglem1 23765 kqreglem2 23766 kqnrmlem1 23767 kqnrmlem2 23768 fclscmpi 24053 tgptsmscld 24175 cnllycmp 25002 clsocv 25298 cmpcmet 25367 cncmet 25370 limcnlp 25928 clsun 36311 cldregopn 36314 heibor1lem 37796 iscnrm3rlem2 48738 iscnrm3rlem5 48741 |
Copyright terms: Public domain | W3C validator |