MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clscld Structured version   Visualization version   GIF version

Theorem clscld 22950
Description: The closure of a subset of a topology's underlying set is closed. (Contributed by NM, 4-Oct-2006.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clscld ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))

Proof of Theorem clscld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 clscld.1 . . 3 𝑋 = 𝐽
21clsval 22940 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
31topcld 22938 . . . . . 6 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
43anim1i 615 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆𝑋))
5 sseq2 3964 . . . . . 6 (𝑥 = 𝑋 → (𝑆𝑥𝑆𝑋))
65elrab 3650 . . . . 5 (𝑋 ∈ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ↔ (𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆𝑋))
74, 6sylibr 234 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑋 ∈ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
87ne0d 4295 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ≠ ∅)
9 ssrab2 4033 . . 3 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ⊆ (Clsd‘𝐽)
10 intcld 22943 . . 3 (({𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ≠ ∅ ∧ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ⊆ (Clsd‘𝐽)) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ∈ (Clsd‘𝐽))
118, 9, 10sylancl 586 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ∈ (Clsd‘𝐽))
122, 11eqeltrd 2828 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3396  wss 3905  c0 4286   cuni 4861   cint 4899  cfv 6486  Topctop 22796  Clsdccld 22919  clsccl 22921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-top 22797  df-cld 22922  df-cls 22924
This theorem is referenced by:  clsf  22951  clsss3  22962  iscld3  22967  clsidm  22970  restcls  23084  cncls2i  23173  nrmsep  23260  lpcls  23267  regsep2  23279  hauscmplem  23309  hausllycmp  23397  txcls  23507  ptclsg  23518  regr1lem  23642  kqreglem1  23644  kqreglem2  23645  kqnrmlem1  23646  kqnrmlem2  23647  fclscmpi  23932  tgptsmscld  24054  cnllycmp  24871  clsocv  25166  cmpcmet  25235  cncmet  25238  limcnlp  25795  clsun  36301  cldregopn  36304  heibor1lem  37788  iscnrm3rlem2  48926  iscnrm3rlem5  48929
  Copyright terms: Public domain W3C validator