MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6lcm4e12 Structured version   Visualization version   GIF version

Theorem 6lcm4e12 16596
Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
6lcm4e12 (6 lcm 4) = 12

Proof of Theorem 6lcm4e12
StepHypRef Expression
1 6cn 12343 . . . 4 6 ∈ ℂ
2 4cn 12337 . . . 4 4 ∈ ℂ
31, 2mulcli 11261 . . 3 (6 · 4) ∈ ℂ
4 6nn0 12533 . . . . 5 6 ∈ ℕ0
54nn0zi 12627 . . . 4 6 ∈ ℤ
6 4z 12636 . . . 4 4 ∈ ℤ
7 lcmcl 16581 . . . . 5 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℕ0)
87nn0cnd 12574 . . . 4 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℂ)
95, 6, 8mp2an 690 . . 3 (6 lcm 4) ∈ ℂ
10 gcdcl 16490 . . . . . 6 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℕ0)
1110nn0cnd 12574 . . . . 5 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℂ)
125, 6, 11mp2an 690 . . . 4 (6 gcd 4) ∈ ℂ
135, 6pm3.2i 469 . . . . . 6 (6 ∈ ℤ ∧ 4 ∈ ℤ)
14 4ne0 12360 . . . . . . . 8 4 ≠ 0
1514neii 2939 . . . . . . 7 ¬ 4 = 0
1615intnan 485 . . . . . 6 ¬ (6 = 0 ∧ 4 = 0)
17 gcdn0cl 16486 . . . . . 6 (((6 ∈ ℤ ∧ 4 ∈ ℤ) ∧ ¬ (6 = 0 ∧ 4 = 0)) → (6 gcd 4) ∈ ℕ)
1813, 16, 17mp2an 690 . . . . 5 (6 gcd 4) ∈ ℕ
1918nnne0i 12292 . . . 4 (6 gcd 4) ≠ 0
2012, 19pm3.2i 469 . . 3 ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)
21 6nn 12341 . . . . . . . 8 6 ∈ ℕ
22 4nn 12335 . . . . . . . 8 4 ∈ ℕ
2321, 22pm3.2i 469 . . . . . . 7 (6 ∈ ℕ ∧ 4 ∈ ℕ)
24 lcmgcdnn 16591 . . . . . . 7 ((6 ∈ ℕ ∧ 4 ∈ ℕ) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4))
2523, 24mp1i 13 . . . . . 6 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4))
2625eqcomd 2734 . . . . 5 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (6 · 4) = ((6 lcm 4) · (6 gcd 4)))
27 divmul3 11917 . . . . 5 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (((6 · 4) / (6 gcd 4)) = (6 lcm 4) ↔ (6 · 4) = ((6 lcm 4) · (6 gcd 4))))
2826, 27mpbird 256 . . . 4 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → ((6 · 4) / (6 gcd 4)) = (6 lcm 4))
2928eqcomd 2734 . . 3 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (6 lcm 4) = ((6 · 4) / (6 gcd 4)))
303, 9, 20, 29mp3an 1457 . 2 (6 lcm 4) = ((6 · 4) / (6 gcd 4))
31 6gcd4e2 16523 . . 3 (6 gcd 4) = 2
3231oveq2i 7437 . 2 ((6 · 4) / (6 gcd 4)) = ((6 · 4) / 2)
33 2cn 12327 . . . 4 2 ∈ ℂ
34 2ne0 12356 . . . 4 2 ≠ 0
351, 2, 33, 34divassi 12010 . . 3 ((6 · 4) / 2) = (6 · (4 / 2))
36 4d2e2 12422 . . . 4 (4 / 2) = 2
3736oveq2i 7437 . . 3 (6 · (4 / 2)) = (6 · 2)
38 6t2e12 12821 . . 3 (6 · 2) = 12
3935, 37, 383eqtri 2760 . 2 ((6 · 4) / 2) = 12
4030, 32, 393eqtri 2760 1 (6 lcm 4) = 12
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2937  (class class class)co 7426  cc 11146  0cc0 11148  1c1 11149   · cmul 11153   / cdiv 11911  cn 12252  2c2 12307  4c4 12309  6c6 12311  cz 12598  cdc 12717   gcd cgcd 16478   lcm clcm 16568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225  ax-pre-sup 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-sup 9475  df-inf 9476  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-div 11912  df-nn 12253  df-2 12315  df-3 12316  df-4 12317  df-5 12318  df-6 12319  df-7 12320  df-8 12321  df-9 12322  df-n0 12513  df-z 12599  df-dec 12718  df-uz 12863  df-rp 13017  df-fl 13799  df-mod 13877  df-seq 14009  df-exp 14069  df-cj 15088  df-re 15089  df-im 15090  df-sqrt 15224  df-abs 15225  df-dvds 16241  df-gcd 16479  df-lcm 16570
This theorem is referenced by:  lcmf2a3a4e12  16627  lcm4un  41527
  Copyright terms: Public domain W3C validator