| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6lcm4e12 | Structured version Visualization version GIF version | ||
| Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.) |
| Ref | Expression |
|---|---|
| 6lcm4e12 | ⊢ (6 lcm 4) = ;12 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6cn 12216 | . . . 4 ⊢ 6 ∈ ℂ | |
| 2 | 4cn 12210 | . . . 4 ⊢ 4 ∈ ℂ | |
| 3 | 1, 2 | mulcli 11119 | . . 3 ⊢ (6 · 4) ∈ ℂ |
| 4 | 6nn0 12402 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 5 | 4 | nn0zi 12497 | . . . 4 ⊢ 6 ∈ ℤ |
| 6 | 4z 12506 | . . . 4 ⊢ 4 ∈ ℤ | |
| 7 | lcmcl 16512 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℕ0) | |
| 8 | 7 | nn0cnd 12444 | . . . 4 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℂ) |
| 9 | 5, 6, 8 | mp2an 692 | . . 3 ⊢ (6 lcm 4) ∈ ℂ |
| 10 | gcdcl 16417 | . . . . . 6 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℕ0) | |
| 11 | 10 | nn0cnd 12444 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℂ) |
| 12 | 5, 6, 11 | mp2an 692 | . . . 4 ⊢ (6 gcd 4) ∈ ℂ |
| 13 | 5, 6 | pm3.2i 470 | . . . . . 6 ⊢ (6 ∈ ℤ ∧ 4 ∈ ℤ) |
| 14 | 4ne0 12233 | . . . . . . . 8 ⊢ 4 ≠ 0 | |
| 15 | 14 | neii 2930 | . . . . . . 7 ⊢ ¬ 4 = 0 |
| 16 | 15 | intnan 486 | . . . . . 6 ⊢ ¬ (6 = 0 ∧ 4 = 0) |
| 17 | gcdn0cl 16413 | . . . . . 6 ⊢ (((6 ∈ ℤ ∧ 4 ∈ ℤ) ∧ ¬ (6 = 0 ∧ 4 = 0)) → (6 gcd 4) ∈ ℕ) | |
| 18 | 13, 16, 17 | mp2an 692 | . . . . 5 ⊢ (6 gcd 4) ∈ ℕ |
| 19 | 18 | nnne0i 12165 | . . . 4 ⊢ (6 gcd 4) ≠ 0 |
| 20 | 12, 19 | pm3.2i 470 | . . 3 ⊢ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0) |
| 21 | 6nn 12214 | . . . . . . . 8 ⊢ 6 ∈ ℕ | |
| 22 | 4nn 12208 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
| 23 | 21, 22 | pm3.2i 470 | . . . . . . 7 ⊢ (6 ∈ ℕ ∧ 4 ∈ ℕ) |
| 24 | lcmgcdnn 16522 | . . . . . . 7 ⊢ ((6 ∈ ℕ ∧ 4 ∈ ℕ) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4)) | |
| 25 | 23, 24 | mp1i 13 | . . . . . 6 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4)) |
| 26 | 25 | eqcomd 2737 | . . . . 5 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (6 · 4) = ((6 lcm 4) · (6 gcd 4))) |
| 27 | divmul3 11781 | . . . . 5 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (((6 · 4) / (6 gcd 4)) = (6 lcm 4) ↔ (6 · 4) = ((6 lcm 4) · (6 gcd 4)))) | |
| 28 | 26, 27 | mpbird 257 | . . . 4 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → ((6 · 4) / (6 gcd 4)) = (6 lcm 4)) |
| 29 | 28 | eqcomd 2737 | . . 3 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (6 lcm 4) = ((6 · 4) / (6 gcd 4))) |
| 30 | 3, 9, 20, 29 | mp3an 1463 | . 2 ⊢ (6 lcm 4) = ((6 · 4) / (6 gcd 4)) |
| 31 | 6gcd4e2 16449 | . . 3 ⊢ (6 gcd 4) = 2 | |
| 32 | 31 | oveq2i 7357 | . 2 ⊢ ((6 · 4) / (6 gcd 4)) = ((6 · 4) / 2) |
| 33 | 2cn 12200 | . . . 4 ⊢ 2 ∈ ℂ | |
| 34 | 2ne0 12229 | . . . 4 ⊢ 2 ≠ 0 | |
| 35 | 1, 2, 33, 34 | divassi 11877 | . . 3 ⊢ ((6 · 4) / 2) = (6 · (4 / 2)) |
| 36 | 4d2e2 12290 | . . . 4 ⊢ (4 / 2) = 2 | |
| 37 | 36 | oveq2i 7357 | . . 3 ⊢ (6 · (4 / 2)) = (6 · 2) |
| 38 | 6t2e12 12692 | . . 3 ⊢ (6 · 2) = ;12 | |
| 39 | 35, 37, 38 | 3eqtri 2758 | . 2 ⊢ ((6 · 4) / 2) = ;12 |
| 40 | 30, 32, 39 | 3eqtri 2758 | 1 ⊢ (6 lcm 4) = ;12 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 · cmul 11011 / cdiv 11774 ℕcn 12125 2c2 12180 4c4 12182 6c6 12184 ℤcz 12468 ;cdc 12588 gcd cgcd 16405 lcm clcm 16499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-lcm 16501 |
| This theorem is referenced by: lcmf2a3a4e12 16558 lcm4un 42055 |
| Copyright terms: Public domain | W3C validator |