MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6lcm4e12 Structured version   Visualization version   GIF version

Theorem 6lcm4e12 16249
Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
6lcm4e12 (6 lcm 4) = 12

Proof of Theorem 6lcm4e12
StepHypRef Expression
1 6cn 11994 . . . 4 6 ∈ ℂ
2 4cn 11988 . . . 4 4 ∈ ℂ
31, 2mulcli 10913 . . 3 (6 · 4) ∈ ℂ
4 6nn0 12184 . . . . 5 6 ∈ ℕ0
54nn0zi 12275 . . . 4 6 ∈ ℤ
6 4z 12284 . . . 4 4 ∈ ℤ
7 lcmcl 16234 . . . . 5 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℕ0)
87nn0cnd 12225 . . . 4 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℂ)
95, 6, 8mp2an 688 . . 3 (6 lcm 4) ∈ ℂ
10 gcdcl 16141 . . . . . 6 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℕ0)
1110nn0cnd 12225 . . . . 5 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℂ)
125, 6, 11mp2an 688 . . . 4 (6 gcd 4) ∈ ℂ
135, 6pm3.2i 470 . . . . . 6 (6 ∈ ℤ ∧ 4 ∈ ℤ)
14 4ne0 12011 . . . . . . . 8 4 ≠ 0
1514neii 2944 . . . . . . 7 ¬ 4 = 0
1615intnan 486 . . . . . 6 ¬ (6 = 0 ∧ 4 = 0)
17 gcdn0cl 16137 . . . . . 6 (((6 ∈ ℤ ∧ 4 ∈ ℤ) ∧ ¬ (6 = 0 ∧ 4 = 0)) → (6 gcd 4) ∈ ℕ)
1813, 16, 17mp2an 688 . . . . 5 (6 gcd 4) ∈ ℕ
1918nnne0i 11943 . . . 4 (6 gcd 4) ≠ 0
2012, 19pm3.2i 470 . . 3 ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)
21 6nn 11992 . . . . . . . 8 6 ∈ ℕ
22 4nn 11986 . . . . . . . 8 4 ∈ ℕ
2321, 22pm3.2i 470 . . . . . . 7 (6 ∈ ℕ ∧ 4 ∈ ℕ)
24 lcmgcdnn 16244 . . . . . . 7 ((6 ∈ ℕ ∧ 4 ∈ ℕ) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4))
2523, 24mp1i 13 . . . . . 6 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4))
2625eqcomd 2744 . . . . 5 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (6 · 4) = ((6 lcm 4) · (6 gcd 4)))
27 divmul3 11568 . . . . 5 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (((6 · 4) / (6 gcd 4)) = (6 lcm 4) ↔ (6 · 4) = ((6 lcm 4) · (6 gcd 4))))
2826, 27mpbird 256 . . . 4 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → ((6 · 4) / (6 gcd 4)) = (6 lcm 4))
2928eqcomd 2744 . . 3 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (6 lcm 4) = ((6 · 4) / (6 gcd 4)))
303, 9, 20, 29mp3an 1459 . 2 (6 lcm 4) = ((6 · 4) / (6 gcd 4))
31 6gcd4e2 16174 . . 3 (6 gcd 4) = 2
3231oveq2i 7266 . 2 ((6 · 4) / (6 gcd 4)) = ((6 · 4) / 2)
33 2cn 11978 . . . 4 2 ∈ ℂ
34 2ne0 12007 . . . 4 2 ≠ 0
351, 2, 33, 34divassi 11661 . . 3 ((6 · 4) / 2) = (6 · (4 / 2))
36 4d2e2 12073 . . . 4 (4 / 2) = 2
3736oveq2i 7266 . . 3 (6 · (4 / 2)) = (6 · 2)
38 6t2e12 12470 . . 3 (6 · 2) = 12
3935, 37, 383eqtri 2770 . 2 ((6 · 4) / 2) = 12
4030, 32, 393eqtri 2770 1 (6 lcm 4) = 12
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   · cmul 10807   / cdiv 11562  cn 11903  2c2 11958  4c4 11960  6c6 11962  cz 12249  cdc 12366   gcd cgcd 16129   lcm clcm 16221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-lcm 16223
This theorem is referenced by:  lcmf2a3a4e12  16280  lcm4un  39952
  Copyright terms: Public domain W3C validator