![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6lcm4e12 | Structured version Visualization version GIF version |
Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.) |
Ref | Expression |
---|---|
6lcm4e12 | ⊢ (6 lcm 4) = ;12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6cn 12343 | . . . 4 ⊢ 6 ∈ ℂ | |
2 | 4cn 12337 | . . . 4 ⊢ 4 ∈ ℂ | |
3 | 1, 2 | mulcli 11261 | . . 3 ⊢ (6 · 4) ∈ ℂ |
4 | 6nn0 12533 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
5 | 4 | nn0zi 12627 | . . . 4 ⊢ 6 ∈ ℤ |
6 | 4z 12636 | . . . 4 ⊢ 4 ∈ ℤ | |
7 | lcmcl 16581 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℕ0) | |
8 | 7 | nn0cnd 12574 | . . . 4 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℂ) |
9 | 5, 6, 8 | mp2an 690 | . . 3 ⊢ (6 lcm 4) ∈ ℂ |
10 | gcdcl 16490 | . . . . . 6 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℕ0) | |
11 | 10 | nn0cnd 12574 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℂ) |
12 | 5, 6, 11 | mp2an 690 | . . . 4 ⊢ (6 gcd 4) ∈ ℂ |
13 | 5, 6 | pm3.2i 469 | . . . . . 6 ⊢ (6 ∈ ℤ ∧ 4 ∈ ℤ) |
14 | 4ne0 12360 | . . . . . . . 8 ⊢ 4 ≠ 0 | |
15 | 14 | neii 2939 | . . . . . . 7 ⊢ ¬ 4 = 0 |
16 | 15 | intnan 485 | . . . . . 6 ⊢ ¬ (6 = 0 ∧ 4 = 0) |
17 | gcdn0cl 16486 | . . . . . 6 ⊢ (((6 ∈ ℤ ∧ 4 ∈ ℤ) ∧ ¬ (6 = 0 ∧ 4 = 0)) → (6 gcd 4) ∈ ℕ) | |
18 | 13, 16, 17 | mp2an 690 | . . . . 5 ⊢ (6 gcd 4) ∈ ℕ |
19 | 18 | nnne0i 12292 | . . . 4 ⊢ (6 gcd 4) ≠ 0 |
20 | 12, 19 | pm3.2i 469 | . . 3 ⊢ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0) |
21 | 6nn 12341 | . . . . . . . 8 ⊢ 6 ∈ ℕ | |
22 | 4nn 12335 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
23 | 21, 22 | pm3.2i 469 | . . . . . . 7 ⊢ (6 ∈ ℕ ∧ 4 ∈ ℕ) |
24 | lcmgcdnn 16591 | . . . . . . 7 ⊢ ((6 ∈ ℕ ∧ 4 ∈ ℕ) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4)) | |
25 | 23, 24 | mp1i 13 | . . . . . 6 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4)) |
26 | 25 | eqcomd 2734 | . . . . 5 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (6 · 4) = ((6 lcm 4) · (6 gcd 4))) |
27 | divmul3 11917 | . . . . 5 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (((6 · 4) / (6 gcd 4)) = (6 lcm 4) ↔ (6 · 4) = ((6 lcm 4) · (6 gcd 4)))) | |
28 | 26, 27 | mpbird 256 | . . . 4 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → ((6 · 4) / (6 gcd 4)) = (6 lcm 4)) |
29 | 28 | eqcomd 2734 | . . 3 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (6 lcm 4) = ((6 · 4) / (6 gcd 4))) |
30 | 3, 9, 20, 29 | mp3an 1457 | . 2 ⊢ (6 lcm 4) = ((6 · 4) / (6 gcd 4)) |
31 | 6gcd4e2 16523 | . . 3 ⊢ (6 gcd 4) = 2 | |
32 | 31 | oveq2i 7437 | . 2 ⊢ ((6 · 4) / (6 gcd 4)) = ((6 · 4) / 2) |
33 | 2cn 12327 | . . . 4 ⊢ 2 ∈ ℂ | |
34 | 2ne0 12356 | . . . 4 ⊢ 2 ≠ 0 | |
35 | 1, 2, 33, 34 | divassi 12010 | . . 3 ⊢ ((6 · 4) / 2) = (6 · (4 / 2)) |
36 | 4d2e2 12422 | . . . 4 ⊢ (4 / 2) = 2 | |
37 | 36 | oveq2i 7437 | . . 3 ⊢ (6 · (4 / 2)) = (6 · 2) |
38 | 6t2e12 12821 | . . 3 ⊢ (6 · 2) = ;12 | |
39 | 35, 37, 38 | 3eqtri 2760 | . 2 ⊢ ((6 · 4) / 2) = ;12 |
40 | 30, 32, 39 | 3eqtri 2760 | 1 ⊢ (6 lcm 4) = ;12 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 (class class class)co 7426 ℂcc 11146 0cc0 11148 1c1 11149 · cmul 11153 / cdiv 11911 ℕcn 12252 2c2 12307 4c4 12309 6c6 12311 ℤcz 12598 ;cdc 12717 gcd cgcd 16478 lcm clcm 16568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-sup 9475 df-inf 9476 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-7 12320 df-8 12321 df-9 12322 df-n0 12513 df-z 12599 df-dec 12718 df-uz 12863 df-rp 13017 df-fl 13799 df-mod 13877 df-seq 14009 df-exp 14069 df-cj 15088 df-re 15089 df-im 15090 df-sqrt 15224 df-abs 15225 df-dvds 16241 df-gcd 16479 df-lcm 16570 |
This theorem is referenced by: lcmf2a3a4e12 16627 lcm4un 41527 |
Copyright terms: Public domain | W3C validator |