MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6lcm4e12 Structured version   Visualization version   GIF version

Theorem 6lcm4e12 16650
Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
6lcm4e12 (6 lcm 4) = 12

Proof of Theorem 6lcm4e12
StepHypRef Expression
1 6cn 12355 . . . 4 6 ∈ ℂ
2 4cn 12349 . . . 4 4 ∈ ℂ
31, 2mulcli 11266 . . 3 (6 · 4) ∈ ℂ
4 6nn0 12545 . . . . 5 6 ∈ ℕ0
54nn0zi 12640 . . . 4 6 ∈ ℤ
6 4z 12649 . . . 4 4 ∈ ℤ
7 lcmcl 16635 . . . . 5 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℕ0)
87nn0cnd 12587 . . . 4 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℂ)
95, 6, 8mp2an 692 . . 3 (6 lcm 4) ∈ ℂ
10 gcdcl 16540 . . . . . 6 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℕ0)
1110nn0cnd 12587 . . . . 5 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℂ)
125, 6, 11mp2an 692 . . . 4 (6 gcd 4) ∈ ℂ
135, 6pm3.2i 470 . . . . . 6 (6 ∈ ℤ ∧ 4 ∈ ℤ)
14 4ne0 12372 . . . . . . . 8 4 ≠ 0
1514neii 2940 . . . . . . 7 ¬ 4 = 0
1615intnan 486 . . . . . 6 ¬ (6 = 0 ∧ 4 = 0)
17 gcdn0cl 16536 . . . . . 6 (((6 ∈ ℤ ∧ 4 ∈ ℤ) ∧ ¬ (6 = 0 ∧ 4 = 0)) → (6 gcd 4) ∈ ℕ)
1813, 16, 17mp2an 692 . . . . 5 (6 gcd 4) ∈ ℕ
1918nnne0i 12304 . . . 4 (6 gcd 4) ≠ 0
2012, 19pm3.2i 470 . . 3 ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)
21 6nn 12353 . . . . . . . 8 6 ∈ ℕ
22 4nn 12347 . . . . . . . 8 4 ∈ ℕ
2321, 22pm3.2i 470 . . . . . . 7 (6 ∈ ℕ ∧ 4 ∈ ℕ)
24 lcmgcdnn 16645 . . . . . . 7 ((6 ∈ ℕ ∧ 4 ∈ ℕ) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4))
2523, 24mp1i 13 . . . . . 6 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4))
2625eqcomd 2741 . . . . 5 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (6 · 4) = ((6 lcm 4) · (6 gcd 4)))
27 divmul3 11925 . . . . 5 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (((6 · 4) / (6 gcd 4)) = (6 lcm 4) ↔ (6 · 4) = ((6 lcm 4) · (6 gcd 4))))
2826, 27mpbird 257 . . . 4 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → ((6 · 4) / (6 gcd 4)) = (6 lcm 4))
2928eqcomd 2741 . . 3 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (6 lcm 4) = ((6 · 4) / (6 gcd 4)))
303, 9, 20, 29mp3an 1460 . 2 (6 lcm 4) = ((6 · 4) / (6 gcd 4))
31 6gcd4e2 16572 . . 3 (6 gcd 4) = 2
3231oveq2i 7442 . 2 ((6 · 4) / (6 gcd 4)) = ((6 · 4) / 2)
33 2cn 12339 . . . 4 2 ∈ ℂ
34 2ne0 12368 . . . 4 2 ≠ 0
351, 2, 33, 34divassi 12021 . . 3 ((6 · 4) / 2) = (6 · (4 / 2))
36 4d2e2 12434 . . . 4 (4 / 2) = 2
3736oveq2i 7442 . . 3 (6 · (4 / 2)) = (6 · 2)
38 6t2e12 12835 . . 3 (6 · 2) = 12
3935, 37, 383eqtri 2767 . 2 ((6 · 4) / 2) = 12
4030, 32, 393eqtri 2767 1 (6 lcm 4) = 12
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   · cmul 11158   / cdiv 11918  cn 12264  2c2 12319  4c4 12321  6c6 12323  cz 12611  cdc 12731   gcd cgcd 16528   lcm clcm 16622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-lcm 16624
This theorem is referenced by:  lcmf2a3a4e12  16681  lcm4un  41998
  Copyright terms: Public domain W3C validator