MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6lcm4e12 Structured version   Visualization version   GIF version

Theorem 6lcm4e12 16545
Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
6lcm4e12 (6 lcm 4) = 12

Proof of Theorem 6lcm4e12
StepHypRef Expression
1 6cn 12237 . . . 4 6 ∈ ℂ
2 4cn 12231 . . . 4 4 ∈ ℂ
31, 2mulcli 11141 . . 3 (6 · 4) ∈ ℂ
4 6nn0 12423 . . . . 5 6 ∈ ℕ0
54nn0zi 12518 . . . 4 6 ∈ ℤ
6 4z 12527 . . . 4 4 ∈ ℤ
7 lcmcl 16530 . . . . 5 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℕ0)
87nn0cnd 12465 . . . 4 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℂ)
95, 6, 8mp2an 692 . . 3 (6 lcm 4) ∈ ℂ
10 gcdcl 16435 . . . . . 6 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℕ0)
1110nn0cnd 12465 . . . . 5 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℂ)
125, 6, 11mp2an 692 . . . 4 (6 gcd 4) ∈ ℂ
135, 6pm3.2i 470 . . . . . 6 (6 ∈ ℤ ∧ 4 ∈ ℤ)
14 4ne0 12254 . . . . . . . 8 4 ≠ 0
1514neii 2927 . . . . . . 7 ¬ 4 = 0
1615intnan 486 . . . . . 6 ¬ (6 = 0 ∧ 4 = 0)
17 gcdn0cl 16431 . . . . . 6 (((6 ∈ ℤ ∧ 4 ∈ ℤ) ∧ ¬ (6 = 0 ∧ 4 = 0)) → (6 gcd 4) ∈ ℕ)
1813, 16, 17mp2an 692 . . . . 5 (6 gcd 4) ∈ ℕ
1918nnne0i 12186 . . . 4 (6 gcd 4) ≠ 0
2012, 19pm3.2i 470 . . 3 ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)
21 6nn 12235 . . . . . . . 8 6 ∈ ℕ
22 4nn 12229 . . . . . . . 8 4 ∈ ℕ
2321, 22pm3.2i 470 . . . . . . 7 (6 ∈ ℕ ∧ 4 ∈ ℕ)
24 lcmgcdnn 16540 . . . . . . 7 ((6 ∈ ℕ ∧ 4 ∈ ℕ) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4))
2523, 24mp1i 13 . . . . . 6 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4))
2625eqcomd 2735 . . . . 5 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (6 · 4) = ((6 lcm 4) · (6 gcd 4)))
27 divmul3 11802 . . . . 5 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (((6 · 4) / (6 gcd 4)) = (6 lcm 4) ↔ (6 · 4) = ((6 lcm 4) · (6 gcd 4))))
2826, 27mpbird 257 . . . 4 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → ((6 · 4) / (6 gcd 4)) = (6 lcm 4))
2928eqcomd 2735 . . 3 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (6 lcm 4) = ((6 · 4) / (6 gcd 4)))
303, 9, 20, 29mp3an 1463 . 2 (6 lcm 4) = ((6 · 4) / (6 gcd 4))
31 6gcd4e2 16467 . . 3 (6 gcd 4) = 2
3231oveq2i 7364 . 2 ((6 · 4) / (6 gcd 4)) = ((6 · 4) / 2)
33 2cn 12221 . . . 4 2 ∈ ℂ
34 2ne0 12250 . . . 4 2 ≠ 0
351, 2, 33, 34divassi 11898 . . 3 ((6 · 4) / 2) = (6 · (4 / 2))
36 4d2e2 12311 . . . 4 (4 / 2) = 2
3736oveq2i 7364 . . 3 (6 · (4 / 2)) = (6 · 2)
38 6t2e12 12713 . . 3 (6 · 2) = 12
3935, 37, 383eqtri 2756 . 2 ((6 · 4) / 2) = 12
4030, 32, 393eqtri 2756 1 (6 lcm 4) = 12
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   · cmul 11033   / cdiv 11795  cn 12146  2c2 12201  4c4 12203  6c6 12205  cz 12489  cdc 12609   gcd cgcd 16423   lcm clcm 16517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-rp 12912  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-gcd 16424  df-lcm 16519
This theorem is referenced by:  lcmf2a3a4e12  16576  lcm4un  41989
  Copyright terms: Public domain W3C validator