| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6lcm4e12 | Structured version Visualization version GIF version | ||
| Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.) |
| Ref | Expression |
|---|---|
| 6lcm4e12 | ⊢ (6 lcm 4) = ;12 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6cn 12336 | . . . 4 ⊢ 6 ∈ ℂ | |
| 2 | 4cn 12330 | . . . 4 ⊢ 4 ∈ ℂ | |
| 3 | 1, 2 | mulcli 11247 | . . 3 ⊢ (6 · 4) ∈ ℂ |
| 4 | 6nn0 12527 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 5 | 4 | nn0zi 12622 | . . . 4 ⊢ 6 ∈ ℤ |
| 6 | 4z 12631 | . . . 4 ⊢ 4 ∈ ℤ | |
| 7 | lcmcl 16625 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℕ0) | |
| 8 | 7 | nn0cnd 12569 | . . . 4 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℂ) |
| 9 | 5, 6, 8 | mp2an 692 | . . 3 ⊢ (6 lcm 4) ∈ ℂ |
| 10 | gcdcl 16530 | . . . . . 6 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℕ0) | |
| 11 | 10 | nn0cnd 12569 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℂ) |
| 12 | 5, 6, 11 | mp2an 692 | . . . 4 ⊢ (6 gcd 4) ∈ ℂ |
| 13 | 5, 6 | pm3.2i 470 | . . . . . 6 ⊢ (6 ∈ ℤ ∧ 4 ∈ ℤ) |
| 14 | 4ne0 12353 | . . . . . . . 8 ⊢ 4 ≠ 0 | |
| 15 | 14 | neii 2935 | . . . . . . 7 ⊢ ¬ 4 = 0 |
| 16 | 15 | intnan 486 | . . . . . 6 ⊢ ¬ (6 = 0 ∧ 4 = 0) |
| 17 | gcdn0cl 16526 | . . . . . 6 ⊢ (((6 ∈ ℤ ∧ 4 ∈ ℤ) ∧ ¬ (6 = 0 ∧ 4 = 0)) → (6 gcd 4) ∈ ℕ) | |
| 18 | 13, 16, 17 | mp2an 692 | . . . . 5 ⊢ (6 gcd 4) ∈ ℕ |
| 19 | 18 | nnne0i 12285 | . . . 4 ⊢ (6 gcd 4) ≠ 0 |
| 20 | 12, 19 | pm3.2i 470 | . . 3 ⊢ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0) |
| 21 | 6nn 12334 | . . . . . . . 8 ⊢ 6 ∈ ℕ | |
| 22 | 4nn 12328 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
| 23 | 21, 22 | pm3.2i 470 | . . . . . . 7 ⊢ (6 ∈ ℕ ∧ 4 ∈ ℕ) |
| 24 | lcmgcdnn 16635 | . . . . . . 7 ⊢ ((6 ∈ ℕ ∧ 4 ∈ ℕ) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4)) | |
| 25 | 23, 24 | mp1i 13 | . . . . . 6 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4)) |
| 26 | 25 | eqcomd 2742 | . . . . 5 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (6 · 4) = ((6 lcm 4) · (6 gcd 4))) |
| 27 | divmul3 11906 | . . . . 5 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (((6 · 4) / (6 gcd 4)) = (6 lcm 4) ↔ (6 · 4) = ((6 lcm 4) · (6 gcd 4)))) | |
| 28 | 26, 27 | mpbird 257 | . . . 4 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → ((6 · 4) / (6 gcd 4)) = (6 lcm 4)) |
| 29 | 28 | eqcomd 2742 | . . 3 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (6 lcm 4) = ((6 · 4) / (6 gcd 4))) |
| 30 | 3, 9, 20, 29 | mp3an 1463 | . 2 ⊢ (6 lcm 4) = ((6 · 4) / (6 gcd 4)) |
| 31 | 6gcd4e2 16562 | . . 3 ⊢ (6 gcd 4) = 2 | |
| 32 | 31 | oveq2i 7421 | . 2 ⊢ ((6 · 4) / (6 gcd 4)) = ((6 · 4) / 2) |
| 33 | 2cn 12320 | . . . 4 ⊢ 2 ∈ ℂ | |
| 34 | 2ne0 12349 | . . . 4 ⊢ 2 ≠ 0 | |
| 35 | 1, 2, 33, 34 | divassi 12002 | . . 3 ⊢ ((6 · 4) / 2) = (6 · (4 / 2)) |
| 36 | 4d2e2 12415 | . . . 4 ⊢ (4 / 2) = 2 | |
| 37 | 36 | oveq2i 7421 | . . 3 ⊢ (6 · (4 / 2)) = (6 · 2) |
| 38 | 6t2e12 12817 | . . 3 ⊢ (6 · 2) = ;12 | |
| 39 | 35, 37, 38 | 3eqtri 2763 | . 2 ⊢ ((6 · 4) / 2) = ;12 |
| 40 | 30, 32, 39 | 3eqtri 2763 | 1 ⊢ (6 lcm 4) = ;12 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 (class class class)co 7410 ℂcc 11132 0cc0 11134 1c1 11135 · cmul 11139 / cdiv 11899 ℕcn 12245 2c2 12300 4c4 12302 6c6 12304 ℤcz 12593 ;cdc 12713 gcd cgcd 16518 lcm clcm 16612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-rp 13014 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-dvds 16278 df-gcd 16519 df-lcm 16614 |
| This theorem is referenced by: lcmf2a3a4e12 16671 lcm4un 42034 |
| Copyright terms: Public domain | W3C validator |