| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6lcm4e12 | Structured version Visualization version GIF version | ||
| Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.) |
| Ref | Expression |
|---|---|
| 6lcm4e12 | ⊢ (6 lcm 4) = ;12 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6cn 12277 | . . . 4 ⊢ 6 ∈ ℂ | |
| 2 | 4cn 12271 | . . . 4 ⊢ 4 ∈ ℂ | |
| 3 | 1, 2 | mulcli 11181 | . . 3 ⊢ (6 · 4) ∈ ℂ |
| 4 | 6nn0 12463 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 5 | 4 | nn0zi 12558 | . . . 4 ⊢ 6 ∈ ℤ |
| 6 | 4z 12567 | . . . 4 ⊢ 4 ∈ ℤ | |
| 7 | lcmcl 16571 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℕ0) | |
| 8 | 7 | nn0cnd 12505 | . . . 4 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℂ) |
| 9 | 5, 6, 8 | mp2an 692 | . . 3 ⊢ (6 lcm 4) ∈ ℂ |
| 10 | gcdcl 16476 | . . . . . 6 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℕ0) | |
| 11 | 10 | nn0cnd 12505 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℂ) |
| 12 | 5, 6, 11 | mp2an 692 | . . . 4 ⊢ (6 gcd 4) ∈ ℂ |
| 13 | 5, 6 | pm3.2i 470 | . . . . . 6 ⊢ (6 ∈ ℤ ∧ 4 ∈ ℤ) |
| 14 | 4ne0 12294 | . . . . . . . 8 ⊢ 4 ≠ 0 | |
| 15 | 14 | neii 2927 | . . . . . . 7 ⊢ ¬ 4 = 0 |
| 16 | 15 | intnan 486 | . . . . . 6 ⊢ ¬ (6 = 0 ∧ 4 = 0) |
| 17 | gcdn0cl 16472 | . . . . . 6 ⊢ (((6 ∈ ℤ ∧ 4 ∈ ℤ) ∧ ¬ (6 = 0 ∧ 4 = 0)) → (6 gcd 4) ∈ ℕ) | |
| 18 | 13, 16, 17 | mp2an 692 | . . . . 5 ⊢ (6 gcd 4) ∈ ℕ |
| 19 | 18 | nnne0i 12226 | . . . 4 ⊢ (6 gcd 4) ≠ 0 |
| 20 | 12, 19 | pm3.2i 470 | . . 3 ⊢ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0) |
| 21 | 6nn 12275 | . . . . . . . 8 ⊢ 6 ∈ ℕ | |
| 22 | 4nn 12269 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
| 23 | 21, 22 | pm3.2i 470 | . . . . . . 7 ⊢ (6 ∈ ℕ ∧ 4 ∈ ℕ) |
| 24 | lcmgcdnn 16581 | . . . . . . 7 ⊢ ((6 ∈ ℕ ∧ 4 ∈ ℕ) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4)) | |
| 25 | 23, 24 | mp1i 13 | . . . . . 6 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4)) |
| 26 | 25 | eqcomd 2735 | . . . . 5 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (6 · 4) = ((6 lcm 4) · (6 gcd 4))) |
| 27 | divmul3 11842 | . . . . 5 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (((6 · 4) / (6 gcd 4)) = (6 lcm 4) ↔ (6 · 4) = ((6 lcm 4) · (6 gcd 4)))) | |
| 28 | 26, 27 | mpbird 257 | . . . 4 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → ((6 · 4) / (6 gcd 4)) = (6 lcm 4)) |
| 29 | 28 | eqcomd 2735 | . . 3 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) ≠ 0)) → (6 lcm 4) = ((6 · 4) / (6 gcd 4))) |
| 30 | 3, 9, 20, 29 | mp3an 1463 | . 2 ⊢ (6 lcm 4) = ((6 · 4) / (6 gcd 4)) |
| 31 | 6gcd4e2 16508 | . . 3 ⊢ (6 gcd 4) = 2 | |
| 32 | 31 | oveq2i 7398 | . 2 ⊢ ((6 · 4) / (6 gcd 4)) = ((6 · 4) / 2) |
| 33 | 2cn 12261 | . . . 4 ⊢ 2 ∈ ℂ | |
| 34 | 2ne0 12290 | . . . 4 ⊢ 2 ≠ 0 | |
| 35 | 1, 2, 33, 34 | divassi 11938 | . . 3 ⊢ ((6 · 4) / 2) = (6 · (4 / 2)) |
| 36 | 4d2e2 12351 | . . . 4 ⊢ (4 / 2) = 2 | |
| 37 | 36 | oveq2i 7398 | . . 3 ⊢ (6 · (4 / 2)) = (6 · 2) |
| 38 | 6t2e12 12753 | . . 3 ⊢ (6 · 2) = ;12 | |
| 39 | 35, 37, 38 | 3eqtri 2756 | . 2 ⊢ ((6 · 4) / 2) = ;12 |
| 40 | 30, 32, 39 | 3eqtri 2756 | 1 ⊢ (6 lcm 4) = ;12 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 · cmul 11073 / cdiv 11835 ℕcn 12186 2c2 12241 4c4 12243 6c6 12245 ℤcz 12529 ;cdc 12649 gcd cgcd 16464 lcm clcm 16558 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-gcd 16465 df-lcm 16560 |
| This theorem is referenced by: lcmf2a3a4e12 16617 lcm4un 42004 |
| Copyright terms: Public domain | W3C validator |