MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3lcm2e6woprm Structured version   Visualization version   GIF version

Theorem 3lcm2e6woprm 16248
Description: The least common multiple of three and two is six. In contrast to 3lcm2e6 16364, this proof does not use the property of 2 and 3 being prime, therefore it is much longer. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 27-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
3lcm2e6woprm (3 lcm 2) = 6

Proof of Theorem 3lcm2e6woprm
StepHypRef Expression
1 3cn 11984 . . . 4 3 ∈ ℂ
2 2cn 11978 . . . 4 2 ∈ ℂ
31, 2mulcli 10913 . . 3 (3 · 2) ∈ ℂ
4 3z 12283 . . . 4 3 ∈ ℤ
5 2z 12282 . . . 4 2 ∈ ℤ
6 lcmcl 16234 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℕ0)
76nn0cnd 12225 . . . 4 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℂ)
84, 5, 7mp2an 688 . . 3 (3 lcm 2) ∈ ℂ
94, 5pm3.2i 470 . . . . 5 (3 ∈ ℤ ∧ 2 ∈ ℤ)
10 2ne0 12007 . . . . . . 7 2 ≠ 0
1110neii 2944 . . . . . 6 ¬ 2 = 0
1211intnan 486 . . . . 5 ¬ (3 = 0 ∧ 2 = 0)
13 gcdn0cl 16137 . . . . . 6 (((3 ∈ ℤ ∧ 2 ∈ ℤ) ∧ ¬ (3 = 0 ∧ 2 = 0)) → (3 gcd 2) ∈ ℕ)
1413nncnd 11919 . . . . 5 (((3 ∈ ℤ ∧ 2 ∈ ℤ) ∧ ¬ (3 = 0 ∧ 2 = 0)) → (3 gcd 2) ∈ ℂ)
159, 12, 14mp2an 688 . . . 4 (3 gcd 2) ∈ ℂ
169, 12, 13mp2an 688 . . . . 5 (3 gcd 2) ∈ ℕ
1716nnne0i 11943 . . . 4 (3 gcd 2) ≠ 0
1815, 17pm3.2i 470 . . 3 ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)
19 3nn 11982 . . . . . . 7 3 ∈ ℕ
20 2nn 11976 . . . . . . 7 2 ∈ ℕ
2119, 20pm3.2i 470 . . . . . 6 (3 ∈ ℕ ∧ 2 ∈ ℕ)
22 lcmgcdnn 16244 . . . . . . 7 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → ((3 lcm 2) · (3 gcd 2)) = (3 · 2))
2322eqcomd 2744 . . . . . 6 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → (3 · 2) = ((3 lcm 2) · (3 gcd 2)))
2421, 23mp1i 13 . . . . 5 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)) → (3 · 2) = ((3 lcm 2) · (3 gcd 2)))
25 divmul3 11568 . . . . 5 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)) → (((3 · 2) / (3 gcd 2)) = (3 lcm 2) ↔ (3 · 2) = ((3 lcm 2) · (3 gcd 2))))
2624, 25mpbird 256 . . . 4 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)) → ((3 · 2) / (3 gcd 2)) = (3 lcm 2))
2726eqcomd 2744 . . 3 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)) → (3 lcm 2) = ((3 · 2) / (3 gcd 2)))
283, 8, 18, 27mp3an 1459 . 2 (3 lcm 2) = ((3 · 2) / (3 gcd 2))
29 gcdcom 16148 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 gcd 2) = (2 gcd 3))
304, 5, 29mp2an 688 . . . 4 (3 gcd 2) = (2 gcd 3)
31 1z 12280 . . . . . . . . 9 1 ∈ ℤ
32 gcdid 16162 . . . . . . . . 9 (1 ∈ ℤ → (1 gcd 1) = (abs‘1))
3331, 32ax-mp 5 . . . . . . . 8 (1 gcd 1) = (abs‘1)
34 abs1 14937 . . . . . . . 8 (abs‘1) = 1
3533, 34eqtr2i 2767 . . . . . . 7 1 = (1 gcd 1)
36 gcdadd 16161 . . . . . . . 8 ((1 ∈ ℤ ∧ 1 ∈ ℤ) → (1 gcd 1) = (1 gcd (1 + 1)))
3731, 31, 36mp2an 688 . . . . . . 7 (1 gcd 1) = (1 gcd (1 + 1))
38 1p1e2 12028 . . . . . . . 8 (1 + 1) = 2
3938oveq2i 7266 . . . . . . 7 (1 gcd (1 + 1)) = (1 gcd 2)
4035, 37, 393eqtri 2770 . . . . . 6 1 = (1 gcd 2)
41 gcdcom 16148 . . . . . . 7 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → (1 gcd 2) = (2 gcd 1))
4231, 5, 41mp2an 688 . . . . . 6 (1 gcd 2) = (2 gcd 1)
43 gcdadd 16161 . . . . . . 7 ((2 ∈ ℤ ∧ 1 ∈ ℤ) → (2 gcd 1) = (2 gcd (1 + 2)))
445, 31, 43mp2an 688 . . . . . 6 (2 gcd 1) = (2 gcd (1 + 2))
4540, 42, 443eqtri 2770 . . . . 5 1 = (2 gcd (1 + 2))
46 1p2e3 12046 . . . . . 6 (1 + 2) = 3
4746oveq2i 7266 . . . . 5 (2 gcd (1 + 2)) = (2 gcd 3)
4845, 47eqtr2i 2767 . . . 4 (2 gcd 3) = 1
4930, 48eqtri 2766 . . 3 (3 gcd 2) = 1
5049oveq2i 7266 . 2 ((3 · 2) / (3 gcd 2)) = ((3 · 2) / 1)
51 3t2e6 12069 . . . 4 (3 · 2) = 6
5251oveq1i 7265 . . 3 ((3 · 2) / 1) = (6 / 1)
53 6cn 11994 . . . 4 6 ∈ ℂ
5453div1i 11633 . . 3 (6 / 1) = 6
5552, 54eqtri 2766 . 2 ((3 · 2) / 1) = 6
5628, 50, 553eqtri 2770 1 (3 lcm 2) = 6
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  6c6 11962  cz 12249  abscabs 14873   gcd cgcd 16129   lcm clcm 16221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-lcm 16223
This theorem is referenced by:  lcmf2a3a4e12  16280
  Copyright terms: Public domain W3C validator