MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3lcm2e6woprm Structured version   Visualization version   GIF version

Theorem 3lcm2e6woprm 16649
Description: The least common multiple of three and two is six. In contrast to 3lcm2e6 16766, this proof does not use the property of 2 and 3 being prime, therefore it is much longer. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 27-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
3lcm2e6woprm (3 lcm 2) = 6

Proof of Theorem 3lcm2e6woprm
StepHypRef Expression
1 3cn 12345 . . . 4 3 ∈ ℂ
2 2cn 12339 . . . 4 2 ∈ ℂ
31, 2mulcli 11266 . . 3 (3 · 2) ∈ ℂ
4 3z 12648 . . . 4 3 ∈ ℤ
5 2z 12647 . . . 4 2 ∈ ℤ
6 lcmcl 16635 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℕ0)
76nn0cnd 12587 . . . 4 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℂ)
84, 5, 7mp2an 692 . . 3 (3 lcm 2) ∈ ℂ
94, 5pm3.2i 470 . . . . 5 (3 ∈ ℤ ∧ 2 ∈ ℤ)
10 2ne0 12368 . . . . . . 7 2 ≠ 0
1110neii 2940 . . . . . 6 ¬ 2 = 0
1211intnan 486 . . . . 5 ¬ (3 = 0 ∧ 2 = 0)
13 gcdn0cl 16536 . . . . . 6 (((3 ∈ ℤ ∧ 2 ∈ ℤ) ∧ ¬ (3 = 0 ∧ 2 = 0)) → (3 gcd 2) ∈ ℕ)
1413nncnd 12280 . . . . 5 (((3 ∈ ℤ ∧ 2 ∈ ℤ) ∧ ¬ (3 = 0 ∧ 2 = 0)) → (3 gcd 2) ∈ ℂ)
159, 12, 14mp2an 692 . . . 4 (3 gcd 2) ∈ ℂ
169, 12, 13mp2an 692 . . . . 5 (3 gcd 2) ∈ ℕ
1716nnne0i 12304 . . . 4 (3 gcd 2) ≠ 0
1815, 17pm3.2i 470 . . 3 ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)
19 3nn 12343 . . . . . . 7 3 ∈ ℕ
20 2nn 12337 . . . . . . 7 2 ∈ ℕ
2119, 20pm3.2i 470 . . . . . 6 (3 ∈ ℕ ∧ 2 ∈ ℕ)
22 lcmgcdnn 16645 . . . . . . 7 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → ((3 lcm 2) · (3 gcd 2)) = (3 · 2))
2322eqcomd 2741 . . . . . 6 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → (3 · 2) = ((3 lcm 2) · (3 gcd 2)))
2421, 23mp1i 13 . . . . 5 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)) → (3 · 2) = ((3 lcm 2) · (3 gcd 2)))
25 divmul3 11925 . . . . 5 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)) → (((3 · 2) / (3 gcd 2)) = (3 lcm 2) ↔ (3 · 2) = ((3 lcm 2) · (3 gcd 2))))
2624, 25mpbird 257 . . . 4 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)) → ((3 · 2) / (3 gcd 2)) = (3 lcm 2))
2726eqcomd 2741 . . 3 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)) → (3 lcm 2) = ((3 · 2) / (3 gcd 2)))
283, 8, 18, 27mp3an 1460 . 2 (3 lcm 2) = ((3 · 2) / (3 gcd 2))
29 gcdcom 16547 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 gcd 2) = (2 gcd 3))
304, 5, 29mp2an 692 . . . 4 (3 gcd 2) = (2 gcd 3)
31 1z 12645 . . . . . . . . 9 1 ∈ ℤ
32 gcdid 16561 . . . . . . . . 9 (1 ∈ ℤ → (1 gcd 1) = (abs‘1))
3331, 32ax-mp 5 . . . . . . . 8 (1 gcd 1) = (abs‘1)
34 abs1 15333 . . . . . . . 8 (abs‘1) = 1
3533, 34eqtr2i 2764 . . . . . . 7 1 = (1 gcd 1)
36 gcdadd 16560 . . . . . . . 8 ((1 ∈ ℤ ∧ 1 ∈ ℤ) → (1 gcd 1) = (1 gcd (1 + 1)))
3731, 31, 36mp2an 692 . . . . . . 7 (1 gcd 1) = (1 gcd (1 + 1))
38 1p1e2 12389 . . . . . . . 8 (1 + 1) = 2
3938oveq2i 7442 . . . . . . 7 (1 gcd (1 + 1)) = (1 gcd 2)
4035, 37, 393eqtri 2767 . . . . . 6 1 = (1 gcd 2)
41 gcdcom 16547 . . . . . . 7 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → (1 gcd 2) = (2 gcd 1))
4231, 5, 41mp2an 692 . . . . . 6 (1 gcd 2) = (2 gcd 1)
43 gcdadd 16560 . . . . . . 7 ((2 ∈ ℤ ∧ 1 ∈ ℤ) → (2 gcd 1) = (2 gcd (1 + 2)))
445, 31, 43mp2an 692 . . . . . 6 (2 gcd 1) = (2 gcd (1 + 2))
4540, 42, 443eqtri 2767 . . . . 5 1 = (2 gcd (1 + 2))
46 1p2e3 12407 . . . . . 6 (1 + 2) = 3
4746oveq2i 7442 . . . . 5 (2 gcd (1 + 2)) = (2 gcd 3)
4845, 47eqtr2i 2764 . . . 4 (2 gcd 3) = 1
4930, 48eqtri 2763 . . 3 (3 gcd 2) = 1
5049oveq2i 7442 . 2 ((3 · 2) / (3 gcd 2)) = ((3 · 2) / 1)
51 3t2e6 12430 . . . 4 (3 · 2) = 6
5251oveq1i 7441 . . 3 ((3 · 2) / 1) = (6 / 1)
53 6cn 12355 . . . 4 6 ∈ ℂ
5453div1i 11993 . . 3 (6 / 1) = 6
5552, 54eqtri 2763 . 2 ((3 · 2) / 1) = 6
5628, 50, 553eqtri 2767 1 (3 lcm 2) = 6
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   / cdiv 11918  cn 12264  2c2 12319  3c3 12320  6c6 12323  cz 12611  abscabs 15270   gcd cgcd 16528   lcm clcm 16622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-lcm 16624
This theorem is referenced by:  lcmf2a3a4e12  16681
  Copyright terms: Public domain W3C validator