MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3lcm2e6woprm Structured version   Visualization version   GIF version

Theorem 3lcm2e6woprm 16634
Description: The least common multiple of three and two is six. In contrast to 3lcm2e6 16751, this proof does not use the property of 2 and 3 being prime, therefore it is much longer. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 27-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
3lcm2e6woprm (3 lcm 2) = 6

Proof of Theorem 3lcm2e6woprm
StepHypRef Expression
1 3cn 12321 . . . 4 3 ∈ ℂ
2 2cn 12315 . . . 4 2 ∈ ℂ
31, 2mulcli 11242 . . 3 (3 · 2) ∈ ℂ
4 3z 12625 . . . 4 3 ∈ ℤ
5 2z 12624 . . . 4 2 ∈ ℤ
6 lcmcl 16620 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℕ0)
76nn0cnd 12564 . . . 4 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℂ)
84, 5, 7mp2an 692 . . 3 (3 lcm 2) ∈ ℂ
94, 5pm3.2i 470 . . . . 5 (3 ∈ ℤ ∧ 2 ∈ ℤ)
10 2ne0 12344 . . . . . . 7 2 ≠ 0
1110neii 2934 . . . . . 6 ¬ 2 = 0
1211intnan 486 . . . . 5 ¬ (3 = 0 ∧ 2 = 0)
13 gcdn0cl 16521 . . . . . 6 (((3 ∈ ℤ ∧ 2 ∈ ℤ) ∧ ¬ (3 = 0 ∧ 2 = 0)) → (3 gcd 2) ∈ ℕ)
1413nncnd 12256 . . . . 5 (((3 ∈ ℤ ∧ 2 ∈ ℤ) ∧ ¬ (3 = 0 ∧ 2 = 0)) → (3 gcd 2) ∈ ℂ)
159, 12, 14mp2an 692 . . . 4 (3 gcd 2) ∈ ℂ
169, 12, 13mp2an 692 . . . . 5 (3 gcd 2) ∈ ℕ
1716nnne0i 12280 . . . 4 (3 gcd 2) ≠ 0
1815, 17pm3.2i 470 . . 3 ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)
19 3nn 12319 . . . . . . 7 3 ∈ ℕ
20 2nn 12313 . . . . . . 7 2 ∈ ℕ
2119, 20pm3.2i 470 . . . . . 6 (3 ∈ ℕ ∧ 2 ∈ ℕ)
22 lcmgcdnn 16630 . . . . . . 7 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → ((3 lcm 2) · (3 gcd 2)) = (3 · 2))
2322eqcomd 2741 . . . . . 6 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → (3 · 2) = ((3 lcm 2) · (3 gcd 2)))
2421, 23mp1i 13 . . . . 5 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)) → (3 · 2) = ((3 lcm 2) · (3 gcd 2)))
25 divmul3 11901 . . . . 5 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)) → (((3 · 2) / (3 gcd 2)) = (3 lcm 2) ↔ (3 · 2) = ((3 lcm 2) · (3 gcd 2))))
2624, 25mpbird 257 . . . 4 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)) → ((3 · 2) / (3 gcd 2)) = (3 lcm 2))
2726eqcomd 2741 . . 3 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)) → (3 lcm 2) = ((3 · 2) / (3 gcd 2)))
283, 8, 18, 27mp3an 1463 . 2 (3 lcm 2) = ((3 · 2) / (3 gcd 2))
29 gcdcom 16532 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 gcd 2) = (2 gcd 3))
304, 5, 29mp2an 692 . . . 4 (3 gcd 2) = (2 gcd 3)
31 1z 12622 . . . . . . . . 9 1 ∈ ℤ
32 gcdid 16546 . . . . . . . . 9 (1 ∈ ℤ → (1 gcd 1) = (abs‘1))
3331, 32ax-mp 5 . . . . . . . 8 (1 gcd 1) = (abs‘1)
34 abs1 15316 . . . . . . . 8 (abs‘1) = 1
3533, 34eqtr2i 2759 . . . . . . 7 1 = (1 gcd 1)
36 gcdadd 16545 . . . . . . . 8 ((1 ∈ ℤ ∧ 1 ∈ ℤ) → (1 gcd 1) = (1 gcd (1 + 1)))
3731, 31, 36mp2an 692 . . . . . . 7 (1 gcd 1) = (1 gcd (1 + 1))
38 1p1e2 12365 . . . . . . . 8 (1 + 1) = 2
3938oveq2i 7416 . . . . . . 7 (1 gcd (1 + 1)) = (1 gcd 2)
4035, 37, 393eqtri 2762 . . . . . 6 1 = (1 gcd 2)
41 gcdcom 16532 . . . . . . 7 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → (1 gcd 2) = (2 gcd 1))
4231, 5, 41mp2an 692 . . . . . 6 (1 gcd 2) = (2 gcd 1)
43 gcdadd 16545 . . . . . . 7 ((2 ∈ ℤ ∧ 1 ∈ ℤ) → (2 gcd 1) = (2 gcd (1 + 2)))
445, 31, 43mp2an 692 . . . . . 6 (2 gcd 1) = (2 gcd (1 + 2))
4540, 42, 443eqtri 2762 . . . . 5 1 = (2 gcd (1 + 2))
46 1p2e3 12383 . . . . . 6 (1 + 2) = 3
4746oveq2i 7416 . . . . 5 (2 gcd (1 + 2)) = (2 gcd 3)
4845, 47eqtr2i 2759 . . . 4 (2 gcd 3) = 1
4930, 48eqtri 2758 . . 3 (3 gcd 2) = 1
5049oveq2i 7416 . 2 ((3 · 2) / (3 gcd 2)) = ((3 · 2) / 1)
51 3t2e6 12406 . . . 4 (3 · 2) = 6
5251oveq1i 7415 . . 3 ((3 · 2) / 1) = (6 / 1)
53 6cn 12331 . . . 4 6 ∈ ℂ
5453div1i 11969 . . 3 (6 / 1) = 6
5552, 54eqtri 2758 . 2 ((3 · 2) / 1) = 6
5628, 50, 553eqtri 2762 1 (3 lcm 2) = 6
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134   / cdiv 11894  cn 12240  2c2 12295  3c3 12296  6c6 12299  cz 12588  abscabs 15253   gcd cgcd 16513   lcm clcm 16607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514  df-lcm 16609
This theorem is referenced by:  lcmf2a3a4e12  16666
  Copyright terms: Public domain W3C validator