MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3lcm2e6woprm Structured version   Visualization version   GIF version

Theorem 3lcm2e6woprm 16348
Description: The least common multiple of three and two is six. In contrast to 3lcm2e6 16464, this proof does not use the property of 2 and 3 being prime, therefore it is much longer. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 27-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
3lcm2e6woprm (3 lcm 2) = 6

Proof of Theorem 3lcm2e6woprm
StepHypRef Expression
1 3cn 12082 . . . 4 3 ∈ ℂ
2 2cn 12076 . . . 4 2 ∈ ℂ
31, 2mulcli 11010 . . 3 (3 · 2) ∈ ℂ
4 3z 12381 . . . 4 3 ∈ ℤ
5 2z 12380 . . . 4 2 ∈ ℤ
6 lcmcl 16334 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℕ0)
76nn0cnd 12323 . . . 4 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℂ)
84, 5, 7mp2an 688 . . 3 (3 lcm 2) ∈ ℂ
94, 5pm3.2i 470 . . . . 5 (3 ∈ ℤ ∧ 2 ∈ ℤ)
10 2ne0 12105 . . . . . . 7 2 ≠ 0
1110neii 2940 . . . . . 6 ¬ 2 = 0
1211intnan 486 . . . . 5 ¬ (3 = 0 ∧ 2 = 0)
13 gcdn0cl 16237 . . . . . 6 (((3 ∈ ℤ ∧ 2 ∈ ℤ) ∧ ¬ (3 = 0 ∧ 2 = 0)) → (3 gcd 2) ∈ ℕ)
1413nncnd 12017 . . . . 5 (((3 ∈ ℤ ∧ 2 ∈ ℤ) ∧ ¬ (3 = 0 ∧ 2 = 0)) → (3 gcd 2) ∈ ℂ)
159, 12, 14mp2an 688 . . . 4 (3 gcd 2) ∈ ℂ
169, 12, 13mp2an 688 . . . . 5 (3 gcd 2) ∈ ℕ
1716nnne0i 12041 . . . 4 (3 gcd 2) ≠ 0
1815, 17pm3.2i 470 . . 3 ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)
19 3nn 12080 . . . . . . 7 3 ∈ ℕ
20 2nn 12074 . . . . . . 7 2 ∈ ℕ
2119, 20pm3.2i 470 . . . . . 6 (3 ∈ ℕ ∧ 2 ∈ ℕ)
22 lcmgcdnn 16344 . . . . . . 7 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → ((3 lcm 2) · (3 gcd 2)) = (3 · 2))
2322eqcomd 2739 . . . . . 6 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → (3 · 2) = ((3 lcm 2) · (3 gcd 2)))
2421, 23mp1i 13 . . . . 5 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)) → (3 · 2) = ((3 lcm 2) · (3 gcd 2)))
25 divmul3 11666 . . . . 5 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)) → (((3 · 2) / (3 gcd 2)) = (3 lcm 2) ↔ (3 · 2) = ((3 lcm 2) · (3 gcd 2))))
2624, 25mpbird 256 . . . 4 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)) → ((3 · 2) / (3 gcd 2)) = (3 lcm 2))
2726eqcomd 2739 . . 3 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) ≠ 0)) → (3 lcm 2) = ((3 · 2) / (3 gcd 2)))
283, 8, 18, 27mp3an 1459 . 2 (3 lcm 2) = ((3 · 2) / (3 gcd 2))
29 gcdcom 16248 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 gcd 2) = (2 gcd 3))
304, 5, 29mp2an 688 . . . 4 (3 gcd 2) = (2 gcd 3)
31 1z 12378 . . . . . . . . 9 1 ∈ ℤ
32 gcdid 16262 . . . . . . . . 9 (1 ∈ ℤ → (1 gcd 1) = (abs‘1))
3331, 32ax-mp 5 . . . . . . . 8 (1 gcd 1) = (abs‘1)
34 abs1 15037 . . . . . . . 8 (abs‘1) = 1
3533, 34eqtr2i 2762 . . . . . . 7 1 = (1 gcd 1)
36 gcdadd 16261 . . . . . . . 8 ((1 ∈ ℤ ∧ 1 ∈ ℤ) → (1 gcd 1) = (1 gcd (1 + 1)))
3731, 31, 36mp2an 688 . . . . . . 7 (1 gcd 1) = (1 gcd (1 + 1))
38 1p1e2 12126 . . . . . . . 8 (1 + 1) = 2
3938oveq2i 7306 . . . . . . 7 (1 gcd (1 + 1)) = (1 gcd 2)
4035, 37, 393eqtri 2765 . . . . . 6 1 = (1 gcd 2)
41 gcdcom 16248 . . . . . . 7 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → (1 gcd 2) = (2 gcd 1))
4231, 5, 41mp2an 688 . . . . . 6 (1 gcd 2) = (2 gcd 1)
43 gcdadd 16261 . . . . . . 7 ((2 ∈ ℤ ∧ 1 ∈ ℤ) → (2 gcd 1) = (2 gcd (1 + 2)))
445, 31, 43mp2an 688 . . . . . 6 (2 gcd 1) = (2 gcd (1 + 2))
4540, 42, 443eqtri 2765 . . . . 5 1 = (2 gcd (1 + 2))
46 1p2e3 12144 . . . . . 6 (1 + 2) = 3
4746oveq2i 7306 . . . . 5 (2 gcd (1 + 2)) = (2 gcd 3)
4845, 47eqtr2i 2762 . . . 4 (2 gcd 3) = 1
4930, 48eqtri 2761 . . 3 (3 gcd 2) = 1
5049oveq2i 7306 . 2 ((3 · 2) / (3 gcd 2)) = ((3 · 2) / 1)
51 3t2e6 12167 . . . 4 (3 · 2) = 6
5251oveq1i 7305 . . 3 ((3 · 2) / 1) = (6 / 1)
53 6cn 12092 . . . 4 6 ∈ ℂ
5453div1i 11731 . . 3 (6 / 1) = 6
5552, 54eqtri 2761 . 2 ((3 · 2) / 1) = 6
5628, 50, 553eqtri 2765 1 (3 lcm 2) = 6
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1085   = wceq 1537  wcel 2101  wne 2938  cfv 6447  (class class class)co 7295  cc 10897  0cc0 10899  1c1 10900   + caddc 10902   · cmul 10904   / cdiv 11660  cn 12001  2c2 12056  3c3 12057  6c6 12060  cz 12347  abscabs 14973   gcd cgcd 16229   lcm clcm 16321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976  ax-pre-sup 10977
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-er 8518  df-en 8754  df-dom 8755  df-sdom 8756  df-sup 9229  df-inf 9230  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-div 11661  df-nn 12002  df-2 12064  df-3 12065  df-4 12066  df-5 12067  df-6 12068  df-n0 12262  df-z 12348  df-uz 12611  df-rp 12759  df-fl 13540  df-mod 13618  df-seq 13750  df-exp 13811  df-cj 14838  df-re 14839  df-im 14840  df-sqrt 14974  df-abs 14975  df-dvds 15992  df-gcd 16230  df-lcm 16323
This theorem is referenced by:  lcmf2a3a4e12  16380
  Copyright terms: Public domain W3C validator