MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnfbey Structured version   Visualization version   GIF version

Theorem topnfbey 29711
Description: Nothing seems to be impossible to Prof. Lirpa. After years of intensive research, he managed to find a proof that when given a chance to reach infinity, one could indeed go beyond, thus giving formal soundness to Buzz Lightyear's motto "To infinity... and beyond!" (Contributed by Prof. Loof Lirpa, 1-Apr-2020.) (Revised by Thierry Arnoux, 2-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
topnfbey (𝐡 ∈ (0...+∞) β†’ +∞ < 𝐡)

Proof of Theorem topnfbey
StepHypRef Expression
1 noel 4329 . . 3 Β¬ 𝐡 ∈ βˆ…
2 pnfxr 11264 . . . . . . . 8 +∞ ∈ ℝ*
3 xrltnr 13095 . . . . . . . 8 (+∞ ∈ ℝ* β†’ Β¬ +∞ < +∞)
42, 3ax-mp 5 . . . . . . 7 Β¬ +∞ < +∞
5 zre 12558 . . . . . . . 8 (+∞ ∈ β„€ β†’ +∞ ∈ ℝ)
6 ltpnf 13096 . . . . . . . 8 (+∞ ∈ ℝ β†’ +∞ < +∞)
75, 6syl 17 . . . . . . 7 (+∞ ∈ β„€ β†’ +∞ < +∞)
84, 7mto 196 . . . . . 6 Β¬ +∞ ∈ β„€
98intnan 487 . . . . 5 Β¬ (0 ∈ β„€ ∧ +∞ ∈ β„€)
10 fzf 13484 . . . . . . 7 ...:(β„€ Γ— β„€)βŸΆπ’« β„€
1110fdmi 6726 . . . . . 6 dom ... = (β„€ Γ— β„€)
1211ndmov 7587 . . . . 5 (Β¬ (0 ∈ β„€ ∧ +∞ ∈ β„€) β†’ (0...+∞) = βˆ…)
139, 12ax-mp 5 . . . 4 (0...+∞) = βˆ…
1413eleq2i 2825 . . 3 (𝐡 ∈ (0...+∞) ↔ 𝐡 ∈ βˆ…)
151, 14mtbir 322 . 2 Β¬ 𝐡 ∈ (0...+∞)
1615pm2.21i 119 1 (𝐡 ∈ (0...+∞) β†’ +∞ < 𝐡)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ…c0 4321  π’« cpw 4601   class class class wbr 5147   Γ— cxp 5673  (class class class)co 7405  β„cr 11105  0cc0 11106  +∞cpnf 11241  β„*cxr 11243   < clt 11244  β„€cz 12554  ...cfz 13480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-pre-lttri 11180  ax-pre-lttrn 11181
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-neg 11443  df-z 12555  df-fz 13481
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator