| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topnfbey | Structured version Visualization version GIF version | ||
| Description: Nothing seems to be impossible to Prof. Lirpa. After years of intensive research, he managed to find a proof that when given a chance to reach infinity, one could indeed go beyond, thus giving formal soundness to Buzz Lightyear's motto "To infinity... and beyond!" (Contributed by Prof. Loof Lirpa, 1-Apr-2020.) (Revised by Thierry Arnoux, 2-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| topnfbey | ⊢ (𝐵 ∈ (0...+∞) → +∞ < 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4287 | . . 3 ⊢ ¬ 𝐵 ∈ ∅ | |
| 2 | pnfxr 11172 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
| 3 | xrltnr 13024 | . . . . . . . 8 ⊢ (+∞ ∈ ℝ* → ¬ +∞ < +∞) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . . 7 ⊢ ¬ +∞ < +∞ |
| 5 | zre 12478 | . . . . . . . 8 ⊢ (+∞ ∈ ℤ → +∞ ∈ ℝ) | |
| 6 | ltpnf 13025 | . . . . . . . 8 ⊢ (+∞ ∈ ℝ → +∞ < +∞) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (+∞ ∈ ℤ → +∞ < +∞) |
| 8 | 4, 7 | mto 197 | . . . . . 6 ⊢ ¬ +∞ ∈ ℤ |
| 9 | 8 | intnan 486 | . . . . 5 ⊢ ¬ (0 ∈ ℤ ∧ +∞ ∈ ℤ) |
| 10 | fzf 13417 | . . . . . . 7 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
| 11 | 10 | fdmi 6668 | . . . . . 6 ⊢ dom ... = (ℤ × ℤ) |
| 12 | 11 | ndmov 7536 | . . . . 5 ⊢ (¬ (0 ∈ ℤ ∧ +∞ ∈ ℤ) → (0...+∞) = ∅) |
| 13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ (0...+∞) = ∅ |
| 14 | 13 | eleq2i 2823 | . . 3 ⊢ (𝐵 ∈ (0...+∞) ↔ 𝐵 ∈ ∅) |
| 15 | 1, 14 | mtbir 323 | . 2 ⊢ ¬ 𝐵 ∈ (0...+∞) |
| 16 | 15 | pm2.21i 119 | 1 ⊢ (𝐵 ∈ (0...+∞) → +∞ < 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∅c0 4282 𝒫 cpw 4549 class class class wbr 5093 × cxp 5617 (class class class)co 7352 ℝcr 11011 0cc0 11012 +∞cpnf 11149 ℝ*cxr 11151 < clt 11152 ℤcz 12474 ...cfz 13413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-pre-lttri 11086 ax-pre-lttrn 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-neg 11353 df-z 12475 df-fz 13414 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |