MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnfbey Structured version   Visualization version   GIF version

Theorem topnfbey 30455
Description: Nothing seems to be impossible to Prof. Lirpa. After years of intensive research, he managed to find a proof that when given a chance to reach infinity, one could indeed go beyond, thus giving formal soundness to Buzz Lightyear's motto "To infinity... and beyond!" (Contributed by Prof. Loof Lirpa, 1-Apr-2020.) (Revised by Thierry Arnoux, 2-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
topnfbey (𝐵 ∈ (0...+∞) → +∞ < 𝐵)

Proof of Theorem topnfbey
StepHypRef Expression
1 noel 4318 . . 3 ¬ 𝐵 ∈ ∅
2 pnfxr 11294 . . . . . . . 8 +∞ ∈ ℝ*
3 xrltnr 13140 . . . . . . . 8 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
42, 3ax-mp 5 . . . . . . 7 ¬ +∞ < +∞
5 zre 12597 . . . . . . . 8 (+∞ ∈ ℤ → +∞ ∈ ℝ)
6 ltpnf 13141 . . . . . . . 8 (+∞ ∈ ℝ → +∞ < +∞)
75, 6syl 17 . . . . . . 7 (+∞ ∈ ℤ → +∞ < +∞)
84, 7mto 197 . . . . . 6 ¬ +∞ ∈ ℤ
98intnan 486 . . . . 5 ¬ (0 ∈ ℤ ∧ +∞ ∈ ℤ)
10 fzf 13533 . . . . . . 7 ...:(ℤ × ℤ)⟶𝒫 ℤ
1110fdmi 6722 . . . . . 6 dom ... = (ℤ × ℤ)
1211ndmov 7596 . . . . 5 (¬ (0 ∈ ℤ ∧ +∞ ∈ ℤ) → (0...+∞) = ∅)
139, 12ax-mp 5 . . . 4 (0...+∞) = ∅
1413eleq2i 2827 . . 3 (𝐵 ∈ (0...+∞) ↔ 𝐵 ∈ ∅)
151, 14mtbir 323 . 2 ¬ 𝐵 ∈ (0...+∞)
1615pm2.21i 119 1 (𝐵 ∈ (0...+∞) → +∞ < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  c0 4313  𝒫 cpw 4580   class class class wbr 5124   × cxp 5657  (class class class)co 7410  cr 11133  0cc0 11134  +∞cpnf 11271  *cxr 11273   < clt 11274  cz 12593  ...cfz 13529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-pre-lttri 11208  ax-pre-lttrn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-neg 11474  df-z 12594  df-fz 13530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator