MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnfbey Structured version   Visualization version   GIF version

Theorem topnfbey 30295
Description: Nothing seems to be impossible to Prof. Lirpa. After years of intensive research, he managed to find a proof that when given a chance to reach infinity, one could indeed go beyond, thus giving formal soundness to Buzz Lightyear's motto "To infinity... and beyond!" (Contributed by Prof. Loof Lirpa, 1-Apr-2020.) (Revised by Thierry Arnoux, 2-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
topnfbey (𝐡 ∈ (0...+∞) β†’ +∞ < 𝐡)

Proof of Theorem topnfbey
StepHypRef Expression
1 noel 4324 . . 3 Β¬ 𝐡 ∈ βˆ…
2 pnfxr 11296 . . . . . . . 8 +∞ ∈ ℝ*
3 xrltnr 13129 . . . . . . . 8 (+∞ ∈ ℝ* β†’ Β¬ +∞ < +∞)
42, 3ax-mp 5 . . . . . . 7 Β¬ +∞ < +∞
5 zre 12590 . . . . . . . 8 (+∞ ∈ β„€ β†’ +∞ ∈ ℝ)
6 ltpnf 13130 . . . . . . . 8 (+∞ ∈ ℝ β†’ +∞ < +∞)
75, 6syl 17 . . . . . . 7 (+∞ ∈ β„€ β†’ +∞ < +∞)
84, 7mto 196 . . . . . 6 Β¬ +∞ ∈ β„€
98intnan 485 . . . . 5 Β¬ (0 ∈ β„€ ∧ +∞ ∈ β„€)
10 fzf 13518 . . . . . . 7 ...:(β„€ Γ— β„€)βŸΆπ’« β„€
1110fdmi 6727 . . . . . 6 dom ... = (β„€ Γ— β„€)
1211ndmov 7600 . . . . 5 (Β¬ (0 ∈ β„€ ∧ +∞ ∈ β„€) β†’ (0...+∞) = βˆ…)
139, 12ax-mp 5 . . . 4 (0...+∞) = βˆ…
1413eleq2i 2817 . . 3 (𝐡 ∈ (0...+∞) ↔ 𝐡 ∈ βˆ…)
151, 14mtbir 322 . 2 Β¬ 𝐡 ∈ (0...+∞)
1615pm2.21i 119 1 (𝐡 ∈ (0...+∞) β†’ +∞ < 𝐡)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  βˆ…c0 4316  π’« cpw 4596   class class class wbr 5141   Γ— cxp 5668  (class class class)co 7414  β„cr 11135  0cc0 11136  +∞cpnf 11273  β„*cxr 11275   < clt 11276  β„€cz 12586  ...cfz 13514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-pre-lttri 11210  ax-pre-lttrn 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5568  df-po 5582  df-so 5583  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7989  df-2nd 7990  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-neg 11475  df-z 12587  df-fz 13515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator