MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnfbey Structured version   Visualization version   GIF version

Theorem topnfbey 30448
Description: Nothing seems to be impossible to Prof. Lirpa. After years of intensive research, he managed to find a proof that when given a chance to reach infinity, one could indeed go beyond, thus giving formal soundness to Buzz Lightyear's motto "To infinity... and beyond!" (Contributed by Prof. Loof Lirpa, 1-Apr-2020.) (Revised by Thierry Arnoux, 2-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
topnfbey (𝐵 ∈ (0...+∞) → +∞ < 𝐵)

Proof of Theorem topnfbey
StepHypRef Expression
1 noel 4297 . . 3 ¬ 𝐵 ∈ ∅
2 pnfxr 11204 . . . . . . . 8 +∞ ∈ ℝ*
3 xrltnr 13055 . . . . . . . 8 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
42, 3ax-mp 5 . . . . . . 7 ¬ +∞ < +∞
5 zre 12509 . . . . . . . 8 (+∞ ∈ ℤ → +∞ ∈ ℝ)
6 ltpnf 13056 . . . . . . . 8 (+∞ ∈ ℝ → +∞ < +∞)
75, 6syl 17 . . . . . . 7 (+∞ ∈ ℤ → +∞ < +∞)
84, 7mto 197 . . . . . 6 ¬ +∞ ∈ ℤ
98intnan 486 . . . . 5 ¬ (0 ∈ ℤ ∧ +∞ ∈ ℤ)
10 fzf 13448 . . . . . . 7 ...:(ℤ × ℤ)⟶𝒫 ℤ
1110fdmi 6681 . . . . . 6 dom ... = (ℤ × ℤ)
1211ndmov 7553 . . . . 5 (¬ (0 ∈ ℤ ∧ +∞ ∈ ℤ) → (0...+∞) = ∅)
139, 12ax-mp 5 . . . 4 (0...+∞) = ∅
1413eleq2i 2820 . . 3 (𝐵 ∈ (0...+∞) ↔ 𝐵 ∈ ∅)
151, 14mtbir 323 . 2 ¬ 𝐵 ∈ (0...+∞)
1615pm2.21i 119 1 (𝐵 ∈ (0...+∞) → +∞ < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  c0 4292  𝒫 cpw 4559   class class class wbr 5102   × cxp 5629  (class class class)co 7369  cr 11043  0cc0 11044  +∞cpnf 11181  *cxr 11183   < clt 11184  cz 12505  ...cfz 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-neg 11384  df-z 12506  df-fz 13445
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator