MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnfbey Structured version   Visualization version   GIF version

Theorem topnfbey 30501
Description: Nothing seems to be impossible to Prof. Lirpa. After years of intensive research, he managed to find a proof that when given a chance to reach infinity, one could indeed go beyond, thus giving formal soundness to Buzz Lightyear's motto "To infinity... and beyond!" (Contributed by Prof. Loof Lirpa, 1-Apr-2020.) (Revised by Thierry Arnoux, 2-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
topnfbey (𝐵 ∈ (0...+∞) → +∞ < 𝐵)

Proof of Theorem topnfbey
StepHypRef Expression
1 noel 4360 . . 3 ¬ 𝐵 ∈ ∅
2 pnfxr 11344 . . . . . . . 8 +∞ ∈ ℝ*
3 xrltnr 13182 . . . . . . . 8 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
42, 3ax-mp 5 . . . . . . 7 ¬ +∞ < +∞
5 zre 12643 . . . . . . . 8 (+∞ ∈ ℤ → +∞ ∈ ℝ)
6 ltpnf 13183 . . . . . . . 8 (+∞ ∈ ℝ → +∞ < +∞)
75, 6syl 17 . . . . . . 7 (+∞ ∈ ℤ → +∞ < +∞)
84, 7mto 197 . . . . . 6 ¬ +∞ ∈ ℤ
98intnan 486 . . . . 5 ¬ (0 ∈ ℤ ∧ +∞ ∈ ℤ)
10 fzf 13571 . . . . . . 7 ...:(ℤ × ℤ)⟶𝒫 ℤ
1110fdmi 6758 . . . . . 6 dom ... = (ℤ × ℤ)
1211ndmov 7634 . . . . 5 (¬ (0 ∈ ℤ ∧ +∞ ∈ ℤ) → (0...+∞) = ∅)
139, 12ax-mp 5 . . . 4 (0...+∞) = ∅
1413eleq2i 2836 . . 3 (𝐵 ∈ (0...+∞) ↔ 𝐵 ∈ ∅)
151, 14mtbir 323 . 2 ¬ 𝐵 ∈ (0...+∞)
1615pm2.21i 119 1 (𝐵 ∈ (0...+∞) → +∞ < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  c0 4352  𝒫 cpw 4622   class class class wbr 5166   × cxp 5698  (class class class)co 7448  cr 11183  0cc0 11184  +∞cpnf 11321  *cxr 11323   < clt 11324  cz 12639  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-neg 11523  df-z 12640  df-fz 13568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator