| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topnfbey | Structured version Visualization version GIF version | ||
| Description: Nothing seems to be impossible to Prof. Lirpa. After years of intensive research, he managed to find a proof that when given a chance to reach infinity, one could indeed go beyond, thus giving formal soundness to Buzz Lightyear's motto "To infinity... and beyond!" (Contributed by Prof. Loof Lirpa, 1-Apr-2020.) (Revised by Thierry Arnoux, 2-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| topnfbey | ⊢ (𝐵 ∈ (0...+∞) → +∞ < 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4337 | . . 3 ⊢ ¬ 𝐵 ∈ ∅ | |
| 2 | pnfxr 11316 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
| 3 | xrltnr 13162 | . . . . . . . 8 ⊢ (+∞ ∈ ℝ* → ¬ +∞ < +∞) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . . 7 ⊢ ¬ +∞ < +∞ |
| 5 | zre 12619 | . . . . . . . 8 ⊢ (+∞ ∈ ℤ → +∞ ∈ ℝ) | |
| 6 | ltpnf 13163 | . . . . . . . 8 ⊢ (+∞ ∈ ℝ → +∞ < +∞) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (+∞ ∈ ℤ → +∞ < +∞) |
| 8 | 4, 7 | mto 197 | . . . . . 6 ⊢ ¬ +∞ ∈ ℤ |
| 9 | 8 | intnan 486 | . . . . 5 ⊢ ¬ (0 ∈ ℤ ∧ +∞ ∈ ℤ) |
| 10 | fzf 13552 | . . . . . . 7 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
| 11 | 10 | fdmi 6746 | . . . . . 6 ⊢ dom ... = (ℤ × ℤ) |
| 12 | 11 | ndmov 7618 | . . . . 5 ⊢ (¬ (0 ∈ ℤ ∧ +∞ ∈ ℤ) → (0...+∞) = ∅) |
| 13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ (0...+∞) = ∅ |
| 14 | 13 | eleq2i 2832 | . . 3 ⊢ (𝐵 ∈ (0...+∞) ↔ 𝐵 ∈ ∅) |
| 15 | 1, 14 | mtbir 323 | . 2 ⊢ ¬ 𝐵 ∈ (0...+∞) |
| 16 | 15 | pm2.21i 119 | 1 ⊢ (𝐵 ∈ (0...+∞) → +∞ < 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∅c0 4332 𝒫 cpw 4599 class class class wbr 5142 × cxp 5682 (class class class)co 7432 ℝcr 11155 0cc0 11156 +∞cpnf 11293 ℝ*cxr 11295 < clt 11296 ℤcz 12615 ...cfz 13548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-pre-lttri 11230 ax-pre-lttrn 11231 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-neg 11496 df-z 12616 df-fz 13549 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |