![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topnfbey | Structured version Visualization version GIF version |
Description: Nothing seems to be impossible to Prof. Lirpa. After years of intensive research, he managed to find a proof that when given a chance to reach infinity, one could indeed go beyond, thus giving formal soundness to Buzz Lightyear's motto "To infinity... and beyond!" (Contributed by Prof. Loof Lirpa, 1-Apr-2020.) (Revised by Thierry Arnoux, 2-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
topnfbey | β’ (π΅ β (0...+β) β +β < π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4329 | . . 3 β’ Β¬ π΅ β β | |
2 | pnfxr 11264 | . . . . . . . 8 β’ +β β β* | |
3 | xrltnr 13095 | . . . . . . . 8 β’ (+β β β* β Β¬ +β < +β) | |
4 | 2, 3 | ax-mp 5 | . . . . . . 7 β’ Β¬ +β < +β |
5 | zre 12558 | . . . . . . . 8 β’ (+β β β€ β +β β β) | |
6 | ltpnf 13096 | . . . . . . . 8 β’ (+β β β β +β < +β) | |
7 | 5, 6 | syl 17 | . . . . . . 7 β’ (+β β β€ β +β < +β) |
8 | 4, 7 | mto 196 | . . . . . 6 β’ Β¬ +β β β€ |
9 | 8 | intnan 487 | . . . . 5 β’ Β¬ (0 β β€ β§ +β β β€) |
10 | fzf 13484 | . . . . . . 7 β’ ...:(β€ Γ β€)βΆπ« β€ | |
11 | 10 | fdmi 6726 | . . . . . 6 β’ dom ... = (β€ Γ β€) |
12 | 11 | ndmov 7587 | . . . . 5 β’ (Β¬ (0 β β€ β§ +β β β€) β (0...+β) = β ) |
13 | 9, 12 | ax-mp 5 | . . . 4 β’ (0...+β) = β |
14 | 13 | eleq2i 2825 | . . 3 β’ (π΅ β (0...+β) β π΅ β β ) |
15 | 1, 14 | mtbir 322 | . 2 β’ Β¬ π΅ β (0...+β) |
16 | 15 | pm2.21i 119 | 1 β’ (π΅ β (0...+β) β +β < π΅) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β c0 4321 π« cpw 4601 class class class wbr 5147 Γ cxp 5673 (class class class)co 7405 βcr 11105 0cc0 11106 +βcpnf 11241 β*cxr 11243 < clt 11244 β€cz 12554 ...cfz 13480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-pre-lttri 11180 ax-pre-lttrn 11181 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-neg 11443 df-z 12555 df-fz 13481 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |