![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topnfbey | Structured version Visualization version GIF version |
Description: Nothing seems to be impossible to Prof. Lirpa. After years of intensive research, he managed to find a proof that when given a chance to reach infinity, one could indeed go beyond, thus giving formal soundness to Buzz Lightyear's motto "To infinity... and beyond!" (Contributed by Prof. Loof Lirpa, 1-Apr-2020.) (Revised by Thierry Arnoux, 2-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
topnfbey | ⊢ (𝐵 ∈ (0...+∞) → +∞ < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4360 | . . 3 ⊢ ¬ 𝐵 ∈ ∅ | |
2 | pnfxr 11344 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
3 | xrltnr 13182 | . . . . . . . 8 ⊢ (+∞ ∈ ℝ* → ¬ +∞ < +∞) | |
4 | 2, 3 | ax-mp 5 | . . . . . . 7 ⊢ ¬ +∞ < +∞ |
5 | zre 12643 | . . . . . . . 8 ⊢ (+∞ ∈ ℤ → +∞ ∈ ℝ) | |
6 | ltpnf 13183 | . . . . . . . 8 ⊢ (+∞ ∈ ℝ → +∞ < +∞) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (+∞ ∈ ℤ → +∞ < +∞) |
8 | 4, 7 | mto 197 | . . . . . 6 ⊢ ¬ +∞ ∈ ℤ |
9 | 8 | intnan 486 | . . . . 5 ⊢ ¬ (0 ∈ ℤ ∧ +∞ ∈ ℤ) |
10 | fzf 13571 | . . . . . . 7 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
11 | 10 | fdmi 6758 | . . . . . 6 ⊢ dom ... = (ℤ × ℤ) |
12 | 11 | ndmov 7634 | . . . . 5 ⊢ (¬ (0 ∈ ℤ ∧ +∞ ∈ ℤ) → (0...+∞) = ∅) |
13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ (0...+∞) = ∅ |
14 | 13 | eleq2i 2836 | . . 3 ⊢ (𝐵 ∈ (0...+∞) ↔ 𝐵 ∈ ∅) |
15 | 1, 14 | mtbir 323 | . 2 ⊢ ¬ 𝐵 ∈ (0...+∞) |
16 | 15 | pm2.21i 119 | 1 ⊢ (𝐵 ∈ (0...+∞) → +∞ < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∅c0 4352 𝒫 cpw 4622 class class class wbr 5166 × cxp 5698 (class class class)co 7448 ℝcr 11183 0cc0 11184 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ℤcz 12639 ...cfz 13567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-neg 11523 df-z 12640 df-fz 13568 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |