![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topnfbey | Structured version Visualization version GIF version |
Description: Nothing seems to be impossible to Prof. Lirpa. After years of intensive research, he managed to find a proof that when given a chance to reach infinity, one could indeed go beyond, thus giving formal soundness to Buzz Lightyear's motto "To infinity... and beyond!" (Contributed by Prof. Loof Lirpa, 1-Apr-2020.) (Revised by Thierry Arnoux, 2-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
topnfbey | β’ (π΅ β (0...+β) β +β < π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4324 | . . 3 β’ Β¬ π΅ β β | |
2 | pnfxr 11296 | . . . . . . . 8 β’ +β β β* | |
3 | xrltnr 13129 | . . . . . . . 8 β’ (+β β β* β Β¬ +β < +β) | |
4 | 2, 3 | ax-mp 5 | . . . . . . 7 β’ Β¬ +β < +β |
5 | zre 12590 | . . . . . . . 8 β’ (+β β β€ β +β β β) | |
6 | ltpnf 13130 | . . . . . . . 8 β’ (+β β β β +β < +β) | |
7 | 5, 6 | syl 17 | . . . . . . 7 β’ (+β β β€ β +β < +β) |
8 | 4, 7 | mto 196 | . . . . . 6 β’ Β¬ +β β β€ |
9 | 8 | intnan 485 | . . . . 5 β’ Β¬ (0 β β€ β§ +β β β€) |
10 | fzf 13518 | . . . . . . 7 β’ ...:(β€ Γ β€)βΆπ« β€ | |
11 | 10 | fdmi 6727 | . . . . . 6 β’ dom ... = (β€ Γ β€) |
12 | 11 | ndmov 7600 | . . . . 5 β’ (Β¬ (0 β β€ β§ +β β β€) β (0...+β) = β ) |
13 | 9, 12 | ax-mp 5 | . . . 4 β’ (0...+β) = β |
14 | 13 | eleq2i 2817 | . . 3 β’ (π΅ β (0...+β) β π΅ β β ) |
15 | 1, 14 | mtbir 322 | . 2 β’ Β¬ π΅ β (0...+β) |
16 | 15 | pm2.21i 119 | 1 β’ (π΅ β (0...+β) β +β < π΅) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β c0 4316 π« cpw 4596 class class class wbr 5141 Γ cxp 5668 (class class class)co 7414 βcr 11135 0cc0 11136 +βcpnf 11273 β*cxr 11275 < clt 11276 β€cz 12586 ...cfz 13514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-pre-lttri 11210 ax-pre-lttrn 11211 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5568 df-po 5582 df-so 5583 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7989 df-2nd 7990 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-neg 11475 df-z 12587 df-fz 13515 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |