Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > topnfbey | Structured version Visualization version GIF version |
Description: Nothing seems to be impossible to Prof. Lirpa. After years of intensive research, he managed to find a proof that when given a chance to reach infinity, one could indeed go beyond, thus giving formal soundness to Buzz Lightyear's motto "To infinity... and beyond!" (Contributed by Prof. Loof Lirpa, 1-Apr-2020.) (Revised by Thierry Arnoux, 2-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
topnfbey | ⊢ (𝐵 ∈ (0...+∞) → +∞ < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4261 | . . 3 ⊢ ¬ 𝐵 ∈ ∅ | |
2 | pnfxr 10960 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
3 | xrltnr 12784 | . . . . . . . 8 ⊢ (+∞ ∈ ℝ* → ¬ +∞ < +∞) | |
4 | 2, 3 | ax-mp 5 | . . . . . . 7 ⊢ ¬ +∞ < +∞ |
5 | zre 12253 | . . . . . . . 8 ⊢ (+∞ ∈ ℤ → +∞ ∈ ℝ) | |
6 | ltpnf 12785 | . . . . . . . 8 ⊢ (+∞ ∈ ℝ → +∞ < +∞) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (+∞ ∈ ℤ → +∞ < +∞) |
8 | 4, 7 | mto 196 | . . . . . 6 ⊢ ¬ +∞ ∈ ℤ |
9 | 8 | intnan 486 | . . . . 5 ⊢ ¬ (0 ∈ ℤ ∧ +∞ ∈ ℤ) |
10 | fzf 13172 | . . . . . . 7 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
11 | 10 | fdmi 6596 | . . . . . 6 ⊢ dom ... = (ℤ × ℤ) |
12 | 11 | ndmov 7434 | . . . . 5 ⊢ (¬ (0 ∈ ℤ ∧ +∞ ∈ ℤ) → (0...+∞) = ∅) |
13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ (0...+∞) = ∅ |
14 | 13 | eleq2i 2830 | . . 3 ⊢ (𝐵 ∈ (0...+∞) ↔ 𝐵 ∈ ∅) |
15 | 1, 14 | mtbir 322 | . 2 ⊢ ¬ 𝐵 ∈ (0...+∞) |
16 | 15 | pm2.21i 119 | 1 ⊢ (𝐵 ∈ (0...+∞) → +∞ < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∅c0 4253 𝒫 cpw 4530 class class class wbr 5070 × cxp 5578 (class class class)co 7255 ℝcr 10801 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 ℤcz 12249 ...cfz 13168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-neg 11138 df-z 12250 df-fz 13169 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |