| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topnfbey | Structured version Visualization version GIF version | ||
| Description: Nothing seems to be impossible to Prof. Lirpa. After years of intensive research, he managed to find a proof that when given a chance to reach infinity, one could indeed go beyond, thus giving formal soundness to Buzz Lightyear's motto "To infinity... and beyond!" (Contributed by Prof. Loof Lirpa, 1-Apr-2020.) (Revised by Thierry Arnoux, 2-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| topnfbey | ⊢ (𝐵 ∈ (0...+∞) → +∞ < 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4286 | . . 3 ⊢ ¬ 𝐵 ∈ ∅ | |
| 2 | pnfxr 11158 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
| 3 | xrltnr 13010 | . . . . . . . 8 ⊢ (+∞ ∈ ℝ* → ¬ +∞ < +∞) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . . 7 ⊢ ¬ +∞ < +∞ |
| 5 | zre 12464 | . . . . . . . 8 ⊢ (+∞ ∈ ℤ → +∞ ∈ ℝ) | |
| 6 | ltpnf 13011 | . . . . . . . 8 ⊢ (+∞ ∈ ℝ → +∞ < +∞) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (+∞ ∈ ℤ → +∞ < +∞) |
| 8 | 4, 7 | mto 197 | . . . . . 6 ⊢ ¬ +∞ ∈ ℤ |
| 9 | 8 | intnan 486 | . . . . 5 ⊢ ¬ (0 ∈ ℤ ∧ +∞ ∈ ℤ) |
| 10 | fzf 13403 | . . . . . . 7 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
| 11 | 10 | fdmi 6658 | . . . . . 6 ⊢ dom ... = (ℤ × ℤ) |
| 12 | 11 | ndmov 7525 | . . . . 5 ⊢ (¬ (0 ∈ ℤ ∧ +∞ ∈ ℤ) → (0...+∞) = ∅) |
| 13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ (0...+∞) = ∅ |
| 14 | 13 | eleq2i 2821 | . . 3 ⊢ (𝐵 ∈ (0...+∞) ↔ 𝐵 ∈ ∅) |
| 15 | 1, 14 | mtbir 323 | . 2 ⊢ ¬ 𝐵 ∈ (0...+∞) |
| 16 | 15 | pm2.21i 119 | 1 ⊢ (𝐵 ∈ (0...+∞) → +∞ < 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∅c0 4281 𝒫 cpw 4548 class class class wbr 5089 × cxp 5612 (class class class)co 7341 ℝcr 10997 0cc0 10998 +∞cpnf 11135 ℝ*cxr 11137 < clt 11138 ℤcz 12460 ...cfz 13399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-pre-lttri 11072 ax-pre-lttrn 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-neg 11339 df-z 12461 df-fz 13400 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |