| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sucomisnotcard | Structured version Visualization version GIF version | ||
| Description: ω +o 1o is not a cardinal number. (Contributed by RP, 1-Oct-2023.) |
| Ref | Expression |
|---|---|
| sucomisnotcard | ⊢ ¬ (ω +o 1o) ∈ ran card |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 9687 | . . . . . 6 ⊢ ω ∈ On | |
| 2 | sucidg 6464 | . . . . . 6 ⊢ (ω ∈ On → ω ∈ suc ω) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ω ∈ suc ω |
| 4 | omensuc 9697 | . . . . 5 ⊢ ω ≈ suc ω | |
| 5 | breq1 5145 | . . . . . 6 ⊢ (𝑥 = ω → (𝑥 ≈ suc ω ↔ ω ≈ suc ω)) | |
| 6 | 5 | rspcev 3621 | . . . . 5 ⊢ ((ω ∈ suc ω ∧ ω ≈ suc ω) → ∃𝑥 ∈ suc ω𝑥 ≈ suc ω) |
| 7 | 3, 4, 6 | mp2an 692 | . . . 4 ⊢ ∃𝑥 ∈ suc ω𝑥 ≈ suc ω |
| 8 | dfrex2 3072 | . . . 4 ⊢ (∃𝑥 ∈ suc ω𝑥 ≈ suc ω ↔ ¬ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω) | |
| 9 | 7, 8 | mpbi 230 | . . 3 ⊢ ¬ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω |
| 10 | 9 | intnan 486 | . 2 ⊢ ¬ (suc ω ∈ On ∧ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω) |
| 11 | oa1suc 8570 | . . . . 5 ⊢ (ω ∈ On → (ω +o 1o) = suc ω) | |
| 12 | 1, 11 | ax-mp 5 | . . . 4 ⊢ (ω +o 1o) = suc ω |
| 13 | 12 | eleq1i 2831 | . . 3 ⊢ ((ω +o 1o) ∈ ran card ↔ suc ω ∈ ran card) |
| 14 | elrncard 43555 | . . 3 ⊢ (suc ω ∈ ran card ↔ (suc ω ∈ On ∧ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω)) | |
| 15 | 13, 14 | sylbb 219 | . 2 ⊢ ((ω +o 1o) ∈ ran card → (suc ω ∈ On ∧ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω)) |
| 16 | 10, 15 | mto 197 | 1 ⊢ ¬ (ω +o 1o) ∈ ran card |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 class class class wbr 5142 ran crn 5685 Oncon0 6383 suc csuc 6385 (class class class)co 7432 ωcom 7888 1oc1o 8500 +o coa 8504 ≈ cen 8983 cardccrd 9976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-oadd 8511 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-card 9980 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |