![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucomisnotcard | Structured version Visualization version GIF version |
Description: ω +o 1o is not a cardinal number. (Contributed by RP, 1-Oct-2023.) |
Ref | Expression |
---|---|
sucomisnotcard | ⊢ ¬ (ω +o 1o) ∈ ran card |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 9637 | . . . . . 6 ⊢ ω ∈ On | |
2 | sucidg 6442 | . . . . . 6 ⊢ (ω ∈ On → ω ∈ suc ω) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ω ∈ suc ω |
4 | omensuc 9647 | . . . . 5 ⊢ ω ≈ suc ω | |
5 | breq1 5150 | . . . . . 6 ⊢ (𝑥 = ω → (𝑥 ≈ suc ω ↔ ω ≈ suc ω)) | |
6 | 5 | rspcev 3612 | . . . . 5 ⊢ ((ω ∈ suc ω ∧ ω ≈ suc ω) → ∃𝑥 ∈ suc ω𝑥 ≈ suc ω) |
7 | 3, 4, 6 | mp2an 690 | . . . 4 ⊢ ∃𝑥 ∈ suc ω𝑥 ≈ suc ω |
8 | dfrex2 3073 | . . . 4 ⊢ (∃𝑥 ∈ suc ω𝑥 ≈ suc ω ↔ ¬ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω) | |
9 | 7, 8 | mpbi 229 | . . 3 ⊢ ¬ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω |
10 | 9 | intnan 487 | . 2 ⊢ ¬ (suc ω ∈ On ∧ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω) |
11 | oa1suc 8527 | . . . . 5 ⊢ (ω ∈ On → (ω +o 1o) = suc ω) | |
12 | 1, 11 | ax-mp 5 | . . . 4 ⊢ (ω +o 1o) = suc ω |
13 | 12 | eleq1i 2824 | . . 3 ⊢ ((ω +o 1o) ∈ ran card ↔ suc ω ∈ ran card) |
14 | elrncard 42273 | . . 3 ⊢ (suc ω ∈ ran card ↔ (suc ω ∈ On ∧ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω)) | |
15 | 13, 14 | sylbb 218 | . 2 ⊢ ((ω +o 1o) ∈ ran card → (suc ω ∈ On ∧ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω)) |
16 | 10, 15 | mto 196 | 1 ⊢ ¬ (ω +o 1o) ∈ ran card |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 class class class wbr 5147 ran crn 5676 Oncon0 6361 suc csuc 6363 (class class class)co 7405 ωcom 7851 1oc1o 8455 +o coa 8459 ≈ cen 8932 cardccrd 9926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-card 9930 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |