![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucomisnotcard | Structured version Visualization version GIF version |
Description: ω +o 1o is not a cardinal number. (Contributed by RP, 1-Oct-2023.) |
Ref | Expression |
---|---|
sucomisnotcard | ⊢ ¬ (ω +o 1o) ∈ ran card |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 9664 | . . . . . 6 ⊢ ω ∈ On | |
2 | sucidg 6446 | . . . . . 6 ⊢ (ω ∈ On → ω ∈ suc ω) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ω ∈ suc ω |
4 | omensuc 9674 | . . . . 5 ⊢ ω ≈ suc ω | |
5 | breq1 5147 | . . . . . 6 ⊢ (𝑥 = ω → (𝑥 ≈ suc ω ↔ ω ≈ suc ω)) | |
6 | 5 | rspcev 3603 | . . . . 5 ⊢ ((ω ∈ suc ω ∧ ω ≈ suc ω) → ∃𝑥 ∈ suc ω𝑥 ≈ suc ω) |
7 | 3, 4, 6 | mp2an 690 | . . . 4 ⊢ ∃𝑥 ∈ suc ω𝑥 ≈ suc ω |
8 | dfrex2 3063 | . . . 4 ⊢ (∃𝑥 ∈ suc ω𝑥 ≈ suc ω ↔ ¬ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω) | |
9 | 7, 8 | mpbi 229 | . . 3 ⊢ ¬ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω |
10 | 9 | intnan 485 | . 2 ⊢ ¬ (suc ω ∈ On ∧ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω) |
11 | oa1suc 8545 | . . . . 5 ⊢ (ω ∈ On → (ω +o 1o) = suc ω) | |
12 | 1, 11 | ax-mp 5 | . . . 4 ⊢ (ω +o 1o) = suc ω |
13 | 12 | eleq1i 2816 | . . 3 ⊢ ((ω +o 1o) ∈ ran card ↔ suc ω ∈ ran card) |
14 | elrncard 43028 | . . 3 ⊢ (suc ω ∈ ran card ↔ (suc ω ∈ On ∧ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω)) | |
15 | 13, 14 | sylbb 218 | . 2 ⊢ ((ω +o 1o) ∈ ran card → (suc ω ∈ On ∧ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω)) |
16 | 10, 15 | mto 196 | 1 ⊢ ¬ (ω +o 1o) ∈ ran card |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3051 ∃wrex 3060 class class class wbr 5144 ran crn 5674 Oncon0 6365 suc csuc 6367 (class class class)co 7413 ωcom 7865 1oc1o 8473 +o coa 8477 ≈ cen 8954 cardccrd 9953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-inf2 9659 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-card 9957 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |