| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sucomisnotcard | Structured version Visualization version GIF version | ||
| Description: ω +o 1o is not a cardinal number. (Contributed by RP, 1-Oct-2023.) |
| Ref | Expression |
|---|---|
| sucomisnotcard | ⊢ ¬ (ω +o 1o) ∈ ran card |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 9531 | . . . . . 6 ⊢ ω ∈ On | |
| 2 | sucidg 6384 | . . . . . 6 ⊢ (ω ∈ On → ω ∈ suc ω) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ω ∈ suc ω |
| 4 | omensuc 9541 | . . . . 5 ⊢ ω ≈ suc ω | |
| 5 | breq1 5089 | . . . . . 6 ⊢ (𝑥 = ω → (𝑥 ≈ suc ω ↔ ω ≈ suc ω)) | |
| 6 | 5 | rspcev 3572 | . . . . 5 ⊢ ((ω ∈ suc ω ∧ ω ≈ suc ω) → ∃𝑥 ∈ suc ω𝑥 ≈ suc ω) |
| 7 | 3, 4, 6 | mp2an 692 | . . . 4 ⊢ ∃𝑥 ∈ suc ω𝑥 ≈ suc ω |
| 8 | dfrex2 3059 | . . . 4 ⊢ (∃𝑥 ∈ suc ω𝑥 ≈ suc ω ↔ ¬ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω) | |
| 9 | 7, 8 | mpbi 230 | . . 3 ⊢ ¬ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω |
| 10 | 9 | intnan 486 | . 2 ⊢ ¬ (suc ω ∈ On ∧ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω) |
| 11 | oa1suc 8441 | . . . . 5 ⊢ (ω ∈ On → (ω +o 1o) = suc ω) | |
| 12 | 1, 11 | ax-mp 5 | . . . 4 ⊢ (ω +o 1o) = suc ω |
| 13 | 12 | eleq1i 2822 | . . 3 ⊢ ((ω +o 1o) ∈ ran card ↔ suc ω ∈ ran card) |
| 14 | elrncard 43570 | . . 3 ⊢ (suc ω ∈ ran card ↔ (suc ω ∈ On ∧ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω)) | |
| 15 | 13, 14 | sylbb 219 | . 2 ⊢ ((ω +o 1o) ∈ ran card → (suc ω ∈ On ∧ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω)) |
| 16 | 10, 15 | mto 197 | 1 ⊢ ¬ (ω +o 1o) ∈ ran card |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 class class class wbr 5086 ran crn 5612 Oncon0 6301 suc csuc 6303 (class class class)co 7341 ωcom 7791 1oc1o 8373 +o coa 8377 ≈ cen 8861 cardccrd 9823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-card 9827 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |