| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sucomisnotcard | Structured version Visualization version GIF version | ||
| Description: ω +o 1o is not a cardinal number. (Contributed by RP, 1-Oct-2023.) |
| Ref | Expression |
|---|---|
| sucomisnotcard | ⊢ ¬ (ω +o 1o) ∈ ran card |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 9547 | . . . . . 6 ⊢ ω ∈ On | |
| 2 | sucidg 6397 | . . . . . 6 ⊢ (ω ∈ On → ω ∈ suc ω) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ω ∈ suc ω |
| 4 | omensuc 9557 | . . . . 5 ⊢ ω ≈ suc ω | |
| 5 | breq1 5098 | . . . . . 6 ⊢ (𝑥 = ω → (𝑥 ≈ suc ω ↔ ω ≈ suc ω)) | |
| 6 | 5 | rspcev 3573 | . . . . 5 ⊢ ((ω ∈ suc ω ∧ ω ≈ suc ω) → ∃𝑥 ∈ suc ω𝑥 ≈ suc ω) |
| 7 | 3, 4, 6 | mp2an 692 | . . . 4 ⊢ ∃𝑥 ∈ suc ω𝑥 ≈ suc ω |
| 8 | dfrex2 3060 | . . . 4 ⊢ (∃𝑥 ∈ suc ω𝑥 ≈ suc ω ↔ ¬ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω) | |
| 9 | 7, 8 | mpbi 230 | . . 3 ⊢ ¬ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω |
| 10 | 9 | intnan 486 | . 2 ⊢ ¬ (suc ω ∈ On ∧ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω) |
| 11 | oa1suc 8455 | . . . . 5 ⊢ (ω ∈ On → (ω +o 1o) = suc ω) | |
| 12 | 1, 11 | ax-mp 5 | . . . 4 ⊢ (ω +o 1o) = suc ω |
| 13 | 12 | eleq1i 2824 | . . 3 ⊢ ((ω +o 1o) ∈ ran card ↔ suc ω ∈ ran card) |
| 14 | elrncard 43694 | . . 3 ⊢ (suc ω ∈ ran card ↔ (suc ω ∈ On ∧ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω)) | |
| 15 | 13, 14 | sylbb 219 | . 2 ⊢ ((ω +o 1o) ∈ ran card → (suc ω ∈ On ∧ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω)) |
| 16 | 10, 15 | mto 197 | 1 ⊢ ¬ (ω +o 1o) ∈ ran card |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 class class class wbr 5095 ran crn 5622 Oncon0 6314 suc csuc 6316 (class class class)co 7355 ωcom 7805 1oc1o 8387 +o coa 8391 ≈ cen 8876 cardccrd 9839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-oadd 8398 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-card 9843 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |