| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sucomisnotcard | Structured version Visualization version GIF version | ||
| Description: ω +o 1o is not a cardinal number. (Contributed by RP, 1-Oct-2023.) |
| Ref | Expression |
|---|---|
| sucomisnotcard | ⊢ ¬ (ω +o 1o) ∈ ran card |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 9575 | . . . . . 6 ⊢ ω ∈ On | |
| 2 | sucidg 6403 | . . . . . 6 ⊢ (ω ∈ On → ω ∈ suc ω) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ω ∈ suc ω |
| 4 | omensuc 9585 | . . . . 5 ⊢ ω ≈ suc ω | |
| 5 | breq1 5105 | . . . . . 6 ⊢ (𝑥 = ω → (𝑥 ≈ suc ω ↔ ω ≈ suc ω)) | |
| 6 | 5 | rspcev 3585 | . . . . 5 ⊢ ((ω ∈ suc ω ∧ ω ≈ suc ω) → ∃𝑥 ∈ suc ω𝑥 ≈ suc ω) |
| 7 | 3, 4, 6 | mp2an 692 | . . . 4 ⊢ ∃𝑥 ∈ suc ω𝑥 ≈ suc ω |
| 8 | dfrex2 3056 | . . . 4 ⊢ (∃𝑥 ∈ suc ω𝑥 ≈ suc ω ↔ ¬ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω) | |
| 9 | 7, 8 | mpbi 230 | . . 3 ⊢ ¬ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω |
| 10 | 9 | intnan 486 | . 2 ⊢ ¬ (suc ω ∈ On ∧ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω) |
| 11 | oa1suc 8472 | . . . . 5 ⊢ (ω ∈ On → (ω +o 1o) = suc ω) | |
| 12 | 1, 11 | ax-mp 5 | . . . 4 ⊢ (ω +o 1o) = suc ω |
| 13 | 12 | eleq1i 2819 | . . 3 ⊢ ((ω +o 1o) ∈ ran card ↔ suc ω ∈ ran card) |
| 14 | elrncard 43499 | . . 3 ⊢ (suc ω ∈ ran card ↔ (suc ω ∈ On ∧ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω)) | |
| 15 | 13, 14 | sylbb 219 | . 2 ⊢ ((ω +o 1o) ∈ ran card → (suc ω ∈ On ∧ ∀𝑥 ∈ suc ω ¬ 𝑥 ≈ suc ω)) |
| 16 | 10, 15 | mto 197 | 1 ⊢ ¬ (ω +o 1o) ∈ ran card |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5102 ran crn 5632 Oncon0 6320 suc csuc 6322 (class class class)co 7369 ωcom 7822 1oc1o 8404 +o coa 8408 ≈ cen 8892 cardccrd 9864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-card 9868 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |