![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ntrl2v2e | Structured version Visualization version GIF version |
Description: A walk which is not a trail: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk, see wlk2v2e 29678, but not a trail. Notice that πΊ is a simple graph (without loops) only if π β π. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
wlk2v2e.i | β’ πΌ = β¨β{π, π}ββ© |
wlk2v2e.f | β’ πΉ = β¨β00ββ© |
wlk2v2e.x | β’ π β V |
wlk2v2e.y | β’ π β V |
wlk2v2e.p | β’ π = β¨βπππββ© |
wlk2v2e.g | β’ πΊ = β¨{π, π}, πΌβ© |
Ref | Expression |
---|---|
ntrl2v2e | β’ Β¬ πΉ(TrailsβπΊ)π |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12574 | . . . . . 6 β’ 0 β β€ | |
2 | 1z 12597 | . . . . . 6 β’ 1 β β€ | |
3 | 1, 2, 1 | 3pm3.2i 1338 | . . . . 5 β’ (0 β β€ β§ 1 β β€ β§ 0 β β€) |
4 | 0ne1 12288 | . . . . 5 β’ 0 β 1 | |
5 | wlk2v2e.f | . . . . . . 7 β’ πΉ = β¨β00ββ© | |
6 | s2prop 14863 | . . . . . . . 8 β’ ((0 β β€ β§ 0 β β€) β β¨β00ββ© = {β¨0, 0β©, β¨1, 0β©}) | |
7 | 1, 1, 6 | mp2an 689 | . . . . . . 7 β’ β¨β00ββ© = {β¨0, 0β©, β¨1, 0β©} |
8 | 5, 7 | eqtri 2759 | . . . . . 6 β’ πΉ = {β¨0, 0β©, β¨1, 0β©} |
9 | 8 | fpropnf1 7269 | . . . . 5 β’ (((0 β β€ β§ 1 β β€ β§ 0 β β€) β§ 0 β 1) β (Fun πΉ β§ Β¬ Fun β‘πΉ)) |
10 | 3, 4, 9 | mp2an 689 | . . . 4 β’ (Fun πΉ β§ Β¬ Fun β‘πΉ) |
11 | 10 | simpri 485 | . . 3 β’ Β¬ Fun β‘πΉ |
12 | 11 | intnan 486 | . 2 β’ Β¬ (πΉ(WalksβπΊ)π β§ Fun β‘πΉ) |
13 | istrl 29221 | . 2 β’ (πΉ(TrailsβπΊ)π β (πΉ(WalksβπΊ)π β§ Fun β‘πΉ)) | |
14 | 12, 13 | mtbir 323 | 1 β’ Β¬ πΉ(TrailsβπΊ)π |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 Vcvv 3473 {cpr 4630 β¨cop 4634 class class class wbr 5148 β‘ccnv 5675 Fun wfun 6537 βcfv 6543 0cc0 11113 1c1 11114 β€cz 12563 β¨βcs1 14550 β¨βcs2 14797 β¨βcs3 14798 Walkscwlks 29121 Trailsctrls 29215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-hash 14296 df-word 14470 df-concat 14526 df-s1 14551 df-s2 14804 df-wlks 29124 df-trls 29217 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |