| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ntrl2v2e | Structured version Visualization version GIF version | ||
| Description: A walk which is not a trail: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk, see wlk2v2e 30086, but not a trail. Notice that 𝐺 is a simple graph (without loops) only if 𝑋 ≠ 𝑌. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| wlk2v2e.i | ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 |
| wlk2v2e.f | ⊢ 𝐹 = 〈“00”〉 |
| wlk2v2e.x | ⊢ 𝑋 ∈ V |
| wlk2v2e.y | ⊢ 𝑌 ∈ V |
| wlk2v2e.p | ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 |
| wlk2v2e.g | ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 |
| Ref | Expression |
|---|---|
| ntrl2v2e | ⊢ ¬ 𝐹(Trails‘𝐺)𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12540 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 2 | 1z 12563 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 3 | 1, 2, 1 | 3pm3.2i 1340 | . . . . 5 ⊢ (0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 0 ∈ ℤ) |
| 4 | 0ne1 12257 | . . . . 5 ⊢ 0 ≠ 1 | |
| 5 | wlk2v2e.f | . . . . . . 7 ⊢ 𝐹 = 〈“00”〉 | |
| 6 | s2prop 14873 | . . . . . . . 8 ⊢ ((0 ∈ ℤ ∧ 0 ∈ ℤ) → 〈“00”〉 = {〈0, 0〉, 〈1, 0〉}) | |
| 7 | 1, 1, 6 | mp2an 692 | . . . . . . 7 ⊢ 〈“00”〉 = {〈0, 0〉, 〈1, 0〉} |
| 8 | 5, 7 | eqtri 2752 | . . . . . 6 ⊢ 𝐹 = {〈0, 0〉, 〈1, 0〉} |
| 9 | 8 | fpropnf1 7242 | . . . . 5 ⊢ (((0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 0 ∈ ℤ) ∧ 0 ≠ 1) → (Fun 𝐹 ∧ ¬ Fun ◡𝐹)) |
| 10 | 3, 4, 9 | mp2an 692 | . . . 4 ⊢ (Fun 𝐹 ∧ ¬ Fun ◡𝐹) |
| 11 | 10 | simpri 485 | . . 3 ⊢ ¬ Fun ◡𝐹 |
| 12 | 11 | intnan 486 | . 2 ⊢ ¬ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹) |
| 13 | istrl 29624 | . 2 ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) | |
| 14 | 12, 13 | mtbir 323 | 1 ⊢ ¬ 𝐹(Trails‘𝐺)𝑃 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 {cpr 4591 〈cop 4595 class class class wbr 5107 ◡ccnv 5637 Fun wfun 6505 ‘cfv 6511 0cc0 11068 1c1 11069 ℤcz 12529 〈“cs1 14560 〈“cs2 14807 〈“cs3 14808 Walkscwlks 29524 Trailsctrls 29618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-s2 14814 df-wlks 29527 df-trls 29620 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |