MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smu01 Structured version   Visualization version   GIF version

Theorem smu01 15829
Description: Multiplication of a sequence by 0 on the right. (Contributed by Mario Carneiro, 19-Sep-2016.)
Assertion
Ref Expression
smu01 (𝐴 ⊆ ℕ0 → (𝐴 smul ∅) = ∅)

Proof of Theorem smu01
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝐴 ⊆ ℕ0𝐴 ⊆ ℕ0)
2 0ss 4307 . . 3 ∅ ⊆ ℕ0
32a1i 11 . 2 (𝐴 ⊆ ℕ0 → ∅ ⊆ ℕ0)
4 noel 4250 . . . 4 ¬ (𝑛𝑘) ∈ ∅
54intnan 490 . . 3 ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ ∅)
65a1i 11 . 2 ((𝐴 ⊆ ℕ0 ∧ (𝑘 ∈ ℕ0𝑛 ∈ ℕ0)) → ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ ∅))
71, 3, 6smu01lem 15828 1 (𝐴 ⊆ ℕ0 → (𝐴 smul ∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2112  wss 3884  c0 4246  (class class class)co 7139  cmin 10863  0cn0 11889   smul csmu 15764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-had 1595  df-cad 1609  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-seq 13369  df-sad 15794  df-smu 15819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator