![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipfval | Structured version Visualization version GIF version |
Description: The inner product operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
ipffval.1 | ⊢ 𝑉 = (Base‘𝑊) |
ipffval.2 | ⊢ , = (·𝑖‘𝑊) |
ipffval.3 | ⊢ · = (·if‘𝑊) |
Ref | Expression |
---|---|
ipfval | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) = (𝑋 , 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7440 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 , 𝑦) = (𝑋 , 𝑌)) | |
2 | ipffval.1 | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | ipffval.2 | . . 3 ⊢ , = (·𝑖‘𝑊) | |
4 | ipffval.3 | . . 3 ⊢ · = (·if‘𝑊) | |
5 | 2, 3, 4 | ipffval 21684 | . 2 ⊢ · = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
6 | ovex 7464 | . 2 ⊢ (𝑋 , 𝑌) ∈ V | |
7 | 1, 5, 6 | ovmpoa 7588 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) = (𝑋 , 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 ·𝑖cip 17303 ·ifcipf 21661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-ipf 21663 |
This theorem is referenced by: ipcn 25294 cnmpt1ip 25295 cnmpt2ip 25296 |
Copyright terms: Public domain | W3C validator |