| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipfval | Structured version Visualization version GIF version | ||
| Description: The inner product operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| ipffval.1 | ⊢ 𝑉 = (Base‘𝑊) |
| ipffval.2 | ⊢ , = (·𝑖‘𝑊) |
| ipffval.3 | ⊢ · = (·if‘𝑊) |
| Ref | Expression |
|---|---|
| ipfval | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) = (𝑋 , 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 7378 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 , 𝑦) = (𝑋 , 𝑌)) | |
| 2 | ipffval.1 | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | ipffval.2 | . . 3 ⊢ , = (·𝑖‘𝑊) | |
| 4 | ipffval.3 | . . 3 ⊢ · = (·if‘𝑊) | |
| 5 | 2, 3, 4 | ipffval 21533 | . 2 ⊢ · = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
| 6 | ovex 7402 | . 2 ⊢ (𝑋 , 𝑌) ∈ V | |
| 7 | 1, 5, 6 | ovmpoa 7524 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) = (𝑋 , 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ·𝑖cip 17201 ·ifcipf 21510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-ipf 21512 |
| This theorem is referenced by: ipcn 25122 cnmpt1ip 25123 cnmpt2ip 25124 |
| Copyright terms: Public domain | W3C validator |