MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipfval Structured version   Visualization version   GIF version

Theorem ipfval 21609
Description: The inner product operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
ipffval.1 𝑉 = (Base‘𝑊)
ipffval.2 , = (·𝑖𝑊)
ipffval.3 · = (·if𝑊)
Assertion
Ref Expression
ipfval ((𝑋𝑉𝑌𝑉) → (𝑋 · 𝑌) = (𝑋 , 𝑌))

Proof of Theorem ipfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7414 . 2 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥 , 𝑦) = (𝑋 , 𝑌))
2 ipffval.1 . . 3 𝑉 = (Base‘𝑊)
3 ipffval.2 . . 3 , = (·𝑖𝑊)
4 ipffval.3 . . 3 · = (·if𝑊)
52, 3, 4ipffval 21608 . 2 · = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
6 ovex 7438 . 2 (𝑋 , 𝑌) ∈ V
71, 5, 6ovmpoa 7562 1 ((𝑋𝑉𝑌𝑉) → (𝑋 · 𝑌) = (𝑋 , 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  Basecbs 17228  ·𝑖cip 17276  ·ifcipf 21585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-ipf 21587
This theorem is referenced by:  ipcn  25198  cnmpt1ip  25199  cnmpt2ip  25200
  Copyright terms: Public domain W3C validator