| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipfval | Structured version Visualization version GIF version | ||
| Description: The inner product operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| ipffval.1 | ⊢ 𝑉 = (Base‘𝑊) |
| ipffval.2 | ⊢ , = (·𝑖‘𝑊) |
| ipffval.3 | ⊢ · = (·if‘𝑊) |
| Ref | Expression |
|---|---|
| ipfval | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) = (𝑋 , 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 7414 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 , 𝑦) = (𝑋 , 𝑌)) | |
| 2 | ipffval.1 | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | ipffval.2 | . . 3 ⊢ , = (·𝑖‘𝑊) | |
| 4 | ipffval.3 | . . 3 ⊢ · = (·if‘𝑊) | |
| 5 | 2, 3, 4 | ipffval 21608 | . 2 ⊢ · = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
| 6 | ovex 7438 | . 2 ⊢ (𝑋 , 𝑌) ∈ V | |
| 7 | 1, 5, 6 | ovmpoa 7562 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) = (𝑋 , 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 ·𝑖cip 17276 ·ifcipf 21585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-ipf 21587 |
| This theorem is referenced by: ipcn 25198 cnmpt1ip 25199 cnmpt2ip 25200 |
| Copyright terms: Public domain | W3C validator |