| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isdilN | Structured version Visualization version GIF version | ||
| Description: The predicate "is a dilation". (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dilset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dilset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| dilset.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
| dilset.m | ⊢ 𝑀 = (PAut‘𝐾) |
| dilset.l | ⊢ 𝐿 = (Dil‘𝐾) |
| Ref | Expression |
|---|---|
| isdilN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐹 ∈ (𝐿‘𝐷) ↔ (𝐹 ∈ 𝑀 ∧ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝐹‘𝑥) = 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dilset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | dilset.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 3 | dilset.w | . . . 4 ⊢ 𝑊 = (WAtoms‘𝐾) | |
| 4 | dilset.m | . . . 4 ⊢ 𝑀 = (PAut‘𝐾) | |
| 5 | dilset.l | . . . 4 ⊢ 𝐿 = (Dil‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | dilsetN 40142 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐿‘𝐷) = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
| 7 | 6 | eleq2d 2815 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐹 ∈ (𝐿‘𝐷) ↔ 𝐹 ∈ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)})) |
| 8 | fveq1 6859 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
| 9 | 8 | eqeq1d 2732 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) = 𝑥 ↔ (𝐹‘𝑥) = 𝑥)) |
| 10 | 9 | imbi2d 340 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥) ↔ (𝑥 ⊆ (𝑊‘𝐷) → (𝐹‘𝑥) = 𝑥))) |
| 11 | 10 | ralbidv 3157 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥) ↔ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝐹‘𝑥) = 𝑥))) |
| 12 | 11 | elrab 3661 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)} ↔ (𝐹 ∈ 𝑀 ∧ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝐹‘𝑥) = 𝑥))) |
| 13 | 7, 12 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐹 ∈ (𝐿‘𝐷) ↔ (𝐹 ∈ 𝑀 ∧ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝐹‘𝑥) = 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ⊆ wss 3916 ‘cfv 6513 Atomscatm 39251 PSubSpcpsubsp 39485 WAtomscwpointsN 39975 PAutcpautN 39976 DilcdilN 40091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-dilN 40095 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |