| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isdilN | Structured version Visualization version GIF version | ||
| Description: The predicate "is a dilation". (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dilset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dilset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| dilset.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
| dilset.m | ⊢ 𝑀 = (PAut‘𝐾) |
| dilset.l | ⊢ 𝐿 = (Dil‘𝐾) |
| Ref | Expression |
|---|---|
| isdilN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐹 ∈ (𝐿‘𝐷) ↔ (𝐹 ∈ 𝑀 ∧ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝐹‘𝑥) = 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dilset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | dilset.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 3 | dilset.w | . . . 4 ⊢ 𝑊 = (WAtoms‘𝐾) | |
| 4 | dilset.m | . . . 4 ⊢ 𝑀 = (PAut‘𝐾) | |
| 5 | dilset.l | . . . 4 ⊢ 𝐿 = (Dil‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | dilsetN 40262 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐿‘𝐷) = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
| 7 | 6 | eleq2d 2817 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐹 ∈ (𝐿‘𝐷) ↔ 𝐹 ∈ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)})) |
| 8 | fveq1 6821 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
| 9 | 8 | eqeq1d 2733 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) = 𝑥 ↔ (𝐹‘𝑥) = 𝑥)) |
| 10 | 9 | imbi2d 340 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥) ↔ (𝑥 ⊆ (𝑊‘𝐷) → (𝐹‘𝑥) = 𝑥))) |
| 11 | 10 | ralbidv 3155 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥) ↔ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝐹‘𝑥) = 𝑥))) |
| 12 | 11 | elrab 3642 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)} ↔ (𝐹 ∈ 𝑀 ∧ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝐹‘𝑥) = 𝑥))) |
| 13 | 7, 12 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐹 ∈ (𝐿‘𝐷) ↔ (𝐹 ∈ 𝑀 ∧ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝐹‘𝑥) = 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ⊆ wss 3897 ‘cfv 6481 Atomscatm 39372 PSubSpcpsubsp 39605 WAtomscwpointsN 40095 PAutcpautN 40096 DilcdilN 40211 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-dilN 40215 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |