Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdilN Structured version   Visualization version   GIF version

Theorem isdilN 39025
Description: The predicate "is a dilation". (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
dilset.a 𝐴 = (Atomsβ€˜πΎ)
dilset.s 𝑆 = (PSubSpβ€˜πΎ)
dilset.w π‘Š = (WAtomsβ€˜πΎ)
dilset.m 𝑀 = (PAutβ€˜πΎ)
dilset.l 𝐿 = (Dilβ€˜πΎ)
Assertion
Ref Expression
isdilN ((𝐾 ∈ 𝐡 ∧ 𝐷 ∈ 𝐴) β†’ (𝐹 ∈ (πΏβ€˜π·) ↔ (𝐹 ∈ 𝑀 ∧ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (πΉβ€˜π‘₯) = π‘₯))))
Distinct variable groups:   π‘₯,𝐾   π‘₯,𝑆   π‘₯,𝐷   π‘₯,𝐹
Allowed substitution hints:   𝐴(π‘₯)   𝐡(π‘₯)   𝐿(π‘₯)   𝑀(π‘₯)   π‘Š(π‘₯)

Proof of Theorem isdilN
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dilset.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
2 dilset.s . . . 4 𝑆 = (PSubSpβ€˜πΎ)
3 dilset.w . . . 4 π‘Š = (WAtomsβ€˜πΎ)
4 dilset.m . . . 4 𝑀 = (PAutβ€˜πΎ)
5 dilset.l . . . 4 𝐿 = (Dilβ€˜πΎ)
61, 2, 3, 4, 5dilsetN 39024 . . 3 ((𝐾 ∈ 𝐡 ∧ 𝐷 ∈ 𝐴) β†’ (πΏβ€˜π·) = {𝑓 ∈ 𝑀 ∣ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (π‘“β€˜π‘₯) = π‘₯)})
76eleq2d 2820 . 2 ((𝐾 ∈ 𝐡 ∧ 𝐷 ∈ 𝐴) β†’ (𝐹 ∈ (πΏβ€˜π·) ↔ 𝐹 ∈ {𝑓 ∈ 𝑀 ∣ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (π‘“β€˜π‘₯) = π‘₯)}))
8 fveq1 6891 . . . . . 6 (𝑓 = 𝐹 β†’ (π‘“β€˜π‘₯) = (πΉβ€˜π‘₯))
98eqeq1d 2735 . . . . 5 (𝑓 = 𝐹 β†’ ((π‘“β€˜π‘₯) = π‘₯ ↔ (πΉβ€˜π‘₯) = π‘₯))
109imbi2d 341 . . . 4 (𝑓 = 𝐹 β†’ ((π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (π‘“β€˜π‘₯) = π‘₯) ↔ (π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (πΉβ€˜π‘₯) = π‘₯)))
1110ralbidv 3178 . . 3 (𝑓 = 𝐹 β†’ (βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (π‘“β€˜π‘₯) = π‘₯) ↔ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (πΉβ€˜π‘₯) = π‘₯)))
1211elrab 3684 . 2 (𝐹 ∈ {𝑓 ∈ 𝑀 ∣ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (π‘“β€˜π‘₯) = π‘₯)} ↔ (𝐹 ∈ 𝑀 ∧ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (πΉβ€˜π‘₯) = π‘₯)))
137, 12bitrdi 287 1 ((𝐾 ∈ 𝐡 ∧ 𝐷 ∈ 𝐴) β†’ (𝐹 ∈ (πΏβ€˜π·) ↔ (𝐹 ∈ 𝑀 ∧ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (πΉβ€˜π‘₯) = π‘₯))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  {crab 3433   βŠ† wss 3949  β€˜cfv 6544  Atomscatm 38133  PSubSpcpsubsp 38367  WAtomscwpointsN 38857  PAutcpautN 38858  DilcdilN 38973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-dilN 38977
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator