Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdilN Structured version   Visualization version   GIF version

Theorem isdilN 39536
Description: The predicate "is a dilation". (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
dilset.a 𝐴 = (Atomsβ€˜πΎ)
dilset.s 𝑆 = (PSubSpβ€˜πΎ)
dilset.w π‘Š = (WAtomsβ€˜πΎ)
dilset.m 𝑀 = (PAutβ€˜πΎ)
dilset.l 𝐿 = (Dilβ€˜πΎ)
Assertion
Ref Expression
isdilN ((𝐾 ∈ 𝐡 ∧ 𝐷 ∈ 𝐴) β†’ (𝐹 ∈ (πΏβ€˜π·) ↔ (𝐹 ∈ 𝑀 ∧ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (πΉβ€˜π‘₯) = π‘₯))))
Distinct variable groups:   π‘₯,𝐾   π‘₯,𝑆   π‘₯,𝐷   π‘₯,𝐹
Allowed substitution hints:   𝐴(π‘₯)   𝐡(π‘₯)   𝐿(π‘₯)   𝑀(π‘₯)   π‘Š(π‘₯)

Proof of Theorem isdilN
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dilset.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
2 dilset.s . . . 4 𝑆 = (PSubSpβ€˜πΎ)
3 dilset.w . . . 4 π‘Š = (WAtomsβ€˜πΎ)
4 dilset.m . . . 4 𝑀 = (PAutβ€˜πΎ)
5 dilset.l . . . 4 𝐿 = (Dilβ€˜πΎ)
61, 2, 3, 4, 5dilsetN 39535 . . 3 ((𝐾 ∈ 𝐡 ∧ 𝐷 ∈ 𝐴) β†’ (πΏβ€˜π·) = {𝑓 ∈ 𝑀 ∣ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (π‘“β€˜π‘₯) = π‘₯)})
76eleq2d 2813 . 2 ((𝐾 ∈ 𝐡 ∧ 𝐷 ∈ 𝐴) β†’ (𝐹 ∈ (πΏβ€˜π·) ↔ 𝐹 ∈ {𝑓 ∈ 𝑀 ∣ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (π‘“β€˜π‘₯) = π‘₯)}))
8 fveq1 6883 . . . . . 6 (𝑓 = 𝐹 β†’ (π‘“β€˜π‘₯) = (πΉβ€˜π‘₯))
98eqeq1d 2728 . . . . 5 (𝑓 = 𝐹 β†’ ((π‘“β€˜π‘₯) = π‘₯ ↔ (πΉβ€˜π‘₯) = π‘₯))
109imbi2d 340 . . . 4 (𝑓 = 𝐹 β†’ ((π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (π‘“β€˜π‘₯) = π‘₯) ↔ (π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (πΉβ€˜π‘₯) = π‘₯)))
1110ralbidv 3171 . . 3 (𝑓 = 𝐹 β†’ (βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (π‘“β€˜π‘₯) = π‘₯) ↔ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (πΉβ€˜π‘₯) = π‘₯)))
1211elrab 3678 . 2 (𝐹 ∈ {𝑓 ∈ 𝑀 ∣ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (π‘“β€˜π‘₯) = π‘₯)} ↔ (𝐹 ∈ 𝑀 ∧ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (πΉβ€˜π‘₯) = π‘₯)))
137, 12bitrdi 287 1 ((𝐾 ∈ 𝐡 ∧ 𝐷 ∈ 𝐴) β†’ (𝐹 ∈ (πΏβ€˜π·) ↔ (𝐹 ∈ 𝑀 ∧ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π·) β†’ (πΉβ€˜π‘₯) = π‘₯))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055  {crab 3426   βŠ† wss 3943  β€˜cfv 6536  Atomscatm 38644  PSubSpcpsubsp 38878  WAtomscwpointsN 39368  PAutcpautN 39369  DilcdilN 39484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-dilN 39488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator