Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdilN Structured version   Visualization version   GIF version

Theorem isdilN 39616
Description: The predicate "is a dilation". (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
dilset.a 𝐴 = (Atoms‘𝐾)
dilset.s 𝑆 = (PSubSp‘𝐾)
dilset.w 𝑊 = (WAtoms‘𝐾)
dilset.m 𝑀 = (PAut‘𝐾)
dilset.l 𝐿 = (Dil‘𝐾)
Assertion
Ref Expression
isdilN ((𝐾𝐵𝐷𝐴) → (𝐹 ∈ (𝐿𝐷) ↔ (𝐹𝑀 ∧ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝐹𝑥) = 𝑥))))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑆   𝑥,𝐷   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐿(𝑥)   𝑀(𝑥)   𝑊(𝑥)

Proof of Theorem isdilN
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dilset.a . . . 4 𝐴 = (Atoms‘𝐾)
2 dilset.s . . . 4 𝑆 = (PSubSp‘𝐾)
3 dilset.w . . . 4 𝑊 = (WAtoms‘𝐾)
4 dilset.m . . . 4 𝑀 = (PAut‘𝐾)
5 dilset.l . . . 4 𝐿 = (Dil‘𝐾)
61, 2, 3, 4, 5dilsetN 39615 . . 3 ((𝐾𝐵𝐷𝐴) → (𝐿𝐷) = {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)})
76eleq2d 2814 . 2 ((𝐾𝐵𝐷𝐴) → (𝐹 ∈ (𝐿𝐷) ↔ 𝐹 ∈ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)}))
8 fveq1 6890 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
98eqeq1d 2729 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑥) = 𝑥 ↔ (𝐹𝑥) = 𝑥))
109imbi2d 340 . . . 4 (𝑓 = 𝐹 → ((𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥) ↔ (𝑥 ⊆ (𝑊𝐷) → (𝐹𝑥) = 𝑥)))
1110ralbidv 3172 . . 3 (𝑓 = 𝐹 → (∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥) ↔ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝐹𝑥) = 𝑥)))
1211elrab 3680 . 2 (𝐹 ∈ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)} ↔ (𝐹𝑀 ∧ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝐹𝑥) = 𝑥)))
137, 12bitrdi 287 1 ((𝐾𝐵𝐷𝐴) → (𝐹 ∈ (𝐿𝐷) ↔ (𝐹𝑀 ∧ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝐹𝑥) = 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3056  {crab 3427  wss 3944  cfv 6542  Atomscatm 38724  PSubSpcpsubsp 38958  WAtomscwpointsN 39448  PAutcpautN 39449  DilcdilN 39564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-dilN 39568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator