Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdilN Structured version   Visualization version   GIF version

Theorem isdilN 40111
Description: The predicate "is a dilation". (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
dilset.a 𝐴 = (Atoms‘𝐾)
dilset.s 𝑆 = (PSubSp‘𝐾)
dilset.w 𝑊 = (WAtoms‘𝐾)
dilset.m 𝑀 = (PAut‘𝐾)
dilset.l 𝐿 = (Dil‘𝐾)
Assertion
Ref Expression
isdilN ((𝐾𝐵𝐷𝐴) → (𝐹 ∈ (𝐿𝐷) ↔ (𝐹𝑀 ∧ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝐹𝑥) = 𝑥))))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑆   𝑥,𝐷   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐿(𝑥)   𝑀(𝑥)   𝑊(𝑥)

Proof of Theorem isdilN
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dilset.a . . . 4 𝐴 = (Atoms‘𝐾)
2 dilset.s . . . 4 𝑆 = (PSubSp‘𝐾)
3 dilset.w . . . 4 𝑊 = (WAtoms‘𝐾)
4 dilset.m . . . 4 𝑀 = (PAut‘𝐾)
5 dilset.l . . . 4 𝐿 = (Dil‘𝐾)
61, 2, 3, 4, 5dilsetN 40110 . . 3 ((𝐾𝐵𝐷𝐴) → (𝐿𝐷) = {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)})
76eleq2d 2830 . 2 ((𝐾𝐵𝐷𝐴) → (𝐹 ∈ (𝐿𝐷) ↔ 𝐹 ∈ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)}))
8 fveq1 6919 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
98eqeq1d 2742 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑥) = 𝑥 ↔ (𝐹𝑥) = 𝑥))
109imbi2d 340 . . . 4 (𝑓 = 𝐹 → ((𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥) ↔ (𝑥 ⊆ (𝑊𝐷) → (𝐹𝑥) = 𝑥)))
1110ralbidv 3184 . . 3 (𝑓 = 𝐹 → (∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥) ↔ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝐹𝑥) = 𝑥)))
1211elrab 3708 . 2 (𝐹 ∈ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)} ↔ (𝐹𝑀 ∧ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝐹𝑥) = 𝑥)))
137, 12bitrdi 287 1 ((𝐾𝐵𝐷𝐴) → (𝐹 ∈ (𝐿𝐷) ↔ (𝐹𝑀 ∧ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝐹𝑥) = 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976  cfv 6573  Atomscatm 39219  PSubSpcpsubsp 39453  WAtomscwpointsN 39943  PAutcpautN 39944  DilcdilN 40059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-dilN 40063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator