| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dilsetN | Structured version Visualization version GIF version | ||
| Description: The set of dilations for a fiducial atom 𝐷. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dilset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dilset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| dilset.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
| dilset.m | ⊢ 𝑀 = (PAut‘𝐾) |
| dilset.l | ⊢ 𝐿 = (Dil‘𝐾) |
| Ref | Expression |
|---|---|
| dilsetN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐿‘𝐷) = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dilset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | dilset.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 3 | dilset.w | . . . 4 ⊢ 𝑊 = (WAtoms‘𝐾) | |
| 4 | dilset.m | . . . 4 ⊢ 𝑀 = (PAut‘𝐾) | |
| 5 | dilset.l | . . . 4 ⊢ 𝐿 = (Dil‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | dilfsetN 40176 | . . 3 ⊢ (𝐾 ∈ 𝐵 → 𝐿 = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)})) |
| 7 | 6 | fveq1d 6883 | . 2 ⊢ (𝐾 ∈ 𝐵 → (𝐿‘𝐷) = ((𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)})‘𝐷)) |
| 8 | fveq2 6881 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → (𝑊‘𝑑) = (𝑊‘𝐷)) | |
| 9 | 8 | sseq2d 3996 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (𝑥 ⊆ (𝑊‘𝑑) ↔ 𝑥 ⊆ (𝑊‘𝐷))) |
| 10 | 9 | imbi1d 341 | . . . . 5 ⊢ (𝑑 = 𝐷 → ((𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥) ↔ (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥))) |
| 11 | 10 | ralbidv 3164 | . . . 4 ⊢ (𝑑 = 𝐷 → (∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥) ↔ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥))) |
| 12 | 11 | rabbidv 3428 | . . 3 ⊢ (𝑑 = 𝐷 → {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)} = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
| 13 | eqid 2736 | . . 3 ⊢ (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)}) = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)}) | |
| 14 | 4 | fvexi 6895 | . . . 4 ⊢ 𝑀 ∈ V |
| 15 | 14 | rabex 5314 | . . 3 ⊢ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)} ∈ V |
| 16 | 12, 13, 15 | fvmpt 6991 | . 2 ⊢ (𝐷 ∈ 𝐴 → ((𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)})‘𝐷) = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
| 17 | 7, 16 | sylan9eq 2791 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐿‘𝐷) = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 ⊆ wss 3931 ↦ cmpt 5206 ‘cfv 6536 Atomscatm 39286 PSubSpcpsubsp 39520 WAtomscwpointsN 40010 PAutcpautN 40011 DilcdilN 40126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-dilN 40130 |
| This theorem is referenced by: isdilN 40178 |
| Copyright terms: Public domain | W3C validator |