Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dilsetN | Structured version Visualization version GIF version |
Description: The set of dilations for a fiducial atom 𝐷. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dilset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dilset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
dilset.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
dilset.m | ⊢ 𝑀 = (PAut‘𝐾) |
dilset.l | ⊢ 𝐿 = (Dil‘𝐾) |
Ref | Expression |
---|---|
dilsetN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐿‘𝐷) = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dilset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | dilset.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
3 | dilset.w | . . . 4 ⊢ 𝑊 = (WAtoms‘𝐾) | |
4 | dilset.m | . . . 4 ⊢ 𝑀 = (PAut‘𝐾) | |
5 | dilset.l | . . . 4 ⊢ 𝐿 = (Dil‘𝐾) | |
6 | 1, 2, 3, 4, 5 | dilfsetN 38175 | . . 3 ⊢ (𝐾 ∈ 𝐵 → 𝐿 = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)})) |
7 | 6 | fveq1d 6773 | . 2 ⊢ (𝐾 ∈ 𝐵 → (𝐿‘𝐷) = ((𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)})‘𝐷)) |
8 | fveq2 6771 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → (𝑊‘𝑑) = (𝑊‘𝐷)) | |
9 | 8 | sseq2d 3958 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (𝑥 ⊆ (𝑊‘𝑑) ↔ 𝑥 ⊆ (𝑊‘𝐷))) |
10 | 9 | imbi1d 342 | . . . . 5 ⊢ (𝑑 = 𝐷 → ((𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥) ↔ (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥))) |
11 | 10 | ralbidv 3123 | . . . 4 ⊢ (𝑑 = 𝐷 → (∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥) ↔ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥))) |
12 | 11 | rabbidv 3413 | . . 3 ⊢ (𝑑 = 𝐷 → {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)} = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
13 | eqid 2740 | . . 3 ⊢ (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)}) = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)}) | |
14 | 4 | fvexi 6785 | . . . 4 ⊢ 𝑀 ∈ V |
15 | 14 | rabex 5260 | . . 3 ⊢ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)} ∈ V |
16 | 12, 13, 15 | fvmpt 6872 | . 2 ⊢ (𝐷 ∈ 𝐴 → ((𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)})‘𝐷) = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
17 | 7, 16 | sylan9eq 2800 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐿‘𝐷) = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 {crab 3070 ⊆ wss 3892 ↦ cmpt 5162 ‘cfv 6432 Atomscatm 37286 PSubSpcpsubsp 37519 WAtomscwpointsN 38009 PAutcpautN 38010 DilcdilN 38125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-dilN 38129 |
This theorem is referenced by: isdilN 38177 |
Copyright terms: Public domain | W3C validator |