Step | Hyp | Ref
| Expression |
1 | | dilset.a |
. . . 4
β’ π΄ = (AtomsβπΎ) |
2 | | dilset.s |
. . . 4
β’ π = (PSubSpβπΎ) |
3 | | dilset.w |
. . . 4
β’ π = (WAtomsβπΎ) |
4 | | dilset.m |
. . . 4
β’ π = (PAutβπΎ) |
5 | | dilset.l |
. . . 4
β’ πΏ = (DilβπΎ) |
6 | 1, 2, 3, 4, 5 | dilfsetN 39023 |
. . 3
β’ (πΎ β π΅ β πΏ = (π β π΄ β¦ {π β π β£ βπ₯ β π (π₯ β (πβπ) β (πβπ₯) = π₯)})) |
7 | 6 | fveq1d 6894 |
. 2
β’ (πΎ β π΅ β (πΏβπ·) = ((π β π΄ β¦ {π β π β£ βπ₯ β π (π₯ β (πβπ) β (πβπ₯) = π₯)})βπ·)) |
8 | | fveq2 6892 |
. . . . . . 7
β’ (π = π· β (πβπ) = (πβπ·)) |
9 | 8 | sseq2d 4015 |
. . . . . 6
β’ (π = π· β (π₯ β (πβπ) β π₯ β (πβπ·))) |
10 | 9 | imbi1d 342 |
. . . . 5
β’ (π = π· β ((π₯ β (πβπ) β (πβπ₯) = π₯) β (π₯ β (πβπ·) β (πβπ₯) = π₯))) |
11 | 10 | ralbidv 3178 |
. . . 4
β’ (π = π· β (βπ₯ β π (π₯ β (πβπ) β (πβπ₯) = π₯) β βπ₯ β π (π₯ β (πβπ·) β (πβπ₯) = π₯))) |
12 | 11 | rabbidv 3441 |
. . 3
β’ (π = π· β {π β π β£ βπ₯ β π (π₯ β (πβπ) β (πβπ₯) = π₯)} = {π β π β£ βπ₯ β π (π₯ β (πβπ·) β (πβπ₯) = π₯)}) |
13 | | eqid 2733 |
. . 3
β’ (π β π΄ β¦ {π β π β£ βπ₯ β π (π₯ β (πβπ) β (πβπ₯) = π₯)}) = (π β π΄ β¦ {π β π β£ βπ₯ β π (π₯ β (πβπ) β (πβπ₯) = π₯)}) |
14 | 4 | fvexi 6906 |
. . . 4
β’ π β V |
15 | 14 | rabex 5333 |
. . 3
β’ {π β π β£ βπ₯ β π (π₯ β (πβπ·) β (πβπ₯) = π₯)} β V |
16 | 12, 13, 15 | fvmpt 6999 |
. 2
β’ (π· β π΄ β ((π β π΄ β¦ {π β π β£ βπ₯ β π (π₯ β (πβπ) β (πβπ₯) = π₯)})βπ·) = {π β π β£ βπ₯ β π (π₯ β (πβπ·) β (πβπ₯) = π₯)}) |
17 | 7, 16 | sylan9eq 2793 |
1
β’ ((πΎ β π΅ β§ π· β π΄) β (πΏβπ·) = {π β π β£ βπ₯ β π (π₯ β (πβπ·) β (πβπ₯) = π₯)}) |