Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dilsetN Structured version   Visualization version   GIF version

Theorem dilsetN 40262
Description: The set of dilations for a fiducial atom 𝐷. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
dilset.a 𝐴 = (Atoms‘𝐾)
dilset.s 𝑆 = (PSubSp‘𝐾)
dilset.w 𝑊 = (WAtoms‘𝐾)
dilset.m 𝑀 = (PAut‘𝐾)
dilset.l 𝐿 = (Dil‘𝐾)
Assertion
Ref Expression
dilsetN ((𝐾𝐵𝐷𝐴) → (𝐿𝐷) = {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)})
Distinct variable groups:   𝑥,𝑓,𝐾   𝑓,𝑀   𝑥,𝑆   𝐷,𝑓,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝐵(𝑥,𝑓)   𝑆(𝑓)   𝐿(𝑥,𝑓)   𝑀(𝑥)   𝑊(𝑥,𝑓)

Proof of Theorem dilsetN
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 dilset.a . . . 4 𝐴 = (Atoms‘𝐾)
2 dilset.s . . . 4 𝑆 = (PSubSp‘𝐾)
3 dilset.w . . . 4 𝑊 = (WAtoms‘𝐾)
4 dilset.m . . . 4 𝑀 = (PAut‘𝐾)
5 dilset.l . . . 4 𝐿 = (Dil‘𝐾)
61, 2, 3, 4, 5dilfsetN 40261 . . 3 (𝐾𝐵𝐿 = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}))
76fveq1d 6824 . 2 (𝐾𝐵 → (𝐿𝐷) = ((𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)})‘𝐷))
8 fveq2 6822 . . . . . . 7 (𝑑 = 𝐷 → (𝑊𝑑) = (𝑊𝐷))
98sseq2d 3962 . . . . . 6 (𝑑 = 𝐷 → (𝑥 ⊆ (𝑊𝑑) ↔ 𝑥 ⊆ (𝑊𝐷)))
109imbi1d 341 . . . . 5 (𝑑 = 𝐷 → ((𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥) ↔ (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)))
1110ralbidv 3155 . . . 4 (𝑑 = 𝐷 → (∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥) ↔ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)))
1211rabbidv 3402 . . 3 (𝑑 = 𝐷 → {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)} = {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)})
13 eqid 2731 . . 3 (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}) = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)})
144fvexi 6836 . . . 4 𝑀 ∈ V
1514rabex 5275 . . 3 {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)} ∈ V
1612, 13, 15fvmpt 6929 . 2 (𝐷𝐴 → ((𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)})‘𝐷) = {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)})
177, 16sylan9eq 2786 1 ((𝐾𝐵𝐷𝐴) → (𝐿𝐷) = {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  wss 3897  cmpt 5170  cfv 6481  Atomscatm 39372  PSubSpcpsubsp 39605  WAtomscwpointsN 40095  PAutcpautN 40096  DilcdilN 40211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-dilN 40215
This theorem is referenced by:  isdilN  40263
  Copyright terms: Public domain W3C validator