Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dilsetN Structured version   Visualization version   GIF version

Theorem dilsetN 40140
Description: The set of dilations for a fiducial atom 𝐷. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
dilset.a 𝐴 = (Atoms‘𝐾)
dilset.s 𝑆 = (PSubSp‘𝐾)
dilset.w 𝑊 = (WAtoms‘𝐾)
dilset.m 𝑀 = (PAut‘𝐾)
dilset.l 𝐿 = (Dil‘𝐾)
Assertion
Ref Expression
dilsetN ((𝐾𝐵𝐷𝐴) → (𝐿𝐷) = {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)})
Distinct variable groups:   𝑥,𝑓,𝐾   𝑓,𝑀   𝑥,𝑆   𝐷,𝑓,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝐵(𝑥,𝑓)   𝑆(𝑓)   𝐿(𝑥,𝑓)   𝑀(𝑥)   𝑊(𝑥,𝑓)

Proof of Theorem dilsetN
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 dilset.a . . . 4 𝐴 = (Atoms‘𝐾)
2 dilset.s . . . 4 𝑆 = (PSubSp‘𝐾)
3 dilset.w . . . 4 𝑊 = (WAtoms‘𝐾)
4 dilset.m . . . 4 𝑀 = (PAut‘𝐾)
5 dilset.l . . . 4 𝐿 = (Dil‘𝐾)
61, 2, 3, 4, 5dilfsetN 40139 . . 3 (𝐾𝐵𝐿 = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}))
76fveq1d 6842 . 2 (𝐾𝐵 → (𝐿𝐷) = ((𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)})‘𝐷))
8 fveq2 6840 . . . . . . 7 (𝑑 = 𝐷 → (𝑊𝑑) = (𝑊𝐷))
98sseq2d 3976 . . . . . 6 (𝑑 = 𝐷 → (𝑥 ⊆ (𝑊𝑑) ↔ 𝑥 ⊆ (𝑊𝐷)))
109imbi1d 341 . . . . 5 (𝑑 = 𝐷 → ((𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥) ↔ (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)))
1110ralbidv 3156 . . . 4 (𝑑 = 𝐷 → (∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥) ↔ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)))
1211rabbidv 3410 . . 3 (𝑑 = 𝐷 → {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)} = {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)})
13 eqid 2729 . . 3 (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}) = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)})
144fvexi 6854 . . . 4 𝑀 ∈ V
1514rabex 5289 . . 3 {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)} ∈ V
1612, 13, 15fvmpt 6950 . 2 (𝐷𝐴 → ((𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)})‘𝐷) = {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)})
177, 16sylan9eq 2784 1 ((𝐾𝐵𝐷𝐴) → (𝐿𝐷) = {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3402  wss 3911  cmpt 5183  cfv 6499  Atomscatm 39249  PSubSpcpsubsp 39483  WAtomscwpointsN 39973  PAutcpautN 39974  DilcdilN 40089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-dilN 40093
This theorem is referenced by:  isdilN  40141
  Copyright terms: Public domain W3C validator