Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dilsetN | Structured version Visualization version GIF version |
Description: The set of dilations for a fiducial atom 𝐷. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dilset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dilset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
dilset.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
dilset.m | ⊢ 𝑀 = (PAut‘𝐾) |
dilset.l | ⊢ 𝐿 = (Dil‘𝐾) |
Ref | Expression |
---|---|
dilsetN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐿‘𝐷) = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dilset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | dilset.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
3 | dilset.w | . . . 4 ⊢ 𝑊 = (WAtoms‘𝐾) | |
4 | dilset.m | . . . 4 ⊢ 𝑀 = (PAut‘𝐾) | |
5 | dilset.l | . . . 4 ⊢ 𝐿 = (Dil‘𝐾) | |
6 | 1, 2, 3, 4, 5 | dilfsetN 38145 | . . 3 ⊢ (𝐾 ∈ 𝐵 → 𝐿 = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)})) |
7 | 6 | fveq1d 6770 | . 2 ⊢ (𝐾 ∈ 𝐵 → (𝐿‘𝐷) = ((𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)})‘𝐷)) |
8 | fveq2 6768 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → (𝑊‘𝑑) = (𝑊‘𝐷)) | |
9 | 8 | sseq2d 3957 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (𝑥 ⊆ (𝑊‘𝑑) ↔ 𝑥 ⊆ (𝑊‘𝐷))) |
10 | 9 | imbi1d 341 | . . . . 5 ⊢ (𝑑 = 𝐷 → ((𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥) ↔ (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥))) |
11 | 10 | ralbidv 3122 | . . . 4 ⊢ (𝑑 = 𝐷 → (∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥) ↔ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥))) |
12 | 11 | rabbidv 3412 | . . 3 ⊢ (𝑑 = 𝐷 → {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)} = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
13 | eqid 2739 | . . 3 ⊢ (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)}) = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)}) | |
14 | 4 | fvexi 6782 | . . . 4 ⊢ 𝑀 ∈ V |
15 | 14 | rabex 5259 | . . 3 ⊢ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)} ∈ V |
16 | 12, 13, 15 | fvmpt 6869 | . 2 ⊢ (𝐷 ∈ 𝐴 → ((𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)})‘𝐷) = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
17 | 7, 16 | sylan9eq 2799 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐿‘𝐷) = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 {crab 3069 ⊆ wss 3891 ↦ cmpt 5161 ‘cfv 6430 Atomscatm 37256 PSubSpcpsubsp 37489 WAtomscwpointsN 37979 PAutcpautN 37980 DilcdilN 38095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-dilN 38099 |
This theorem is referenced by: isdilN 38147 |
Copyright terms: Public domain | W3C validator |