![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dilsetN | Structured version Visualization version GIF version |
Description: The set of dilations for a fiducial atom 𝐷. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dilset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dilset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
dilset.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
dilset.m | ⊢ 𝑀 = (PAut‘𝐾) |
dilset.l | ⊢ 𝐿 = (Dil‘𝐾) |
Ref | Expression |
---|---|
dilsetN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐿‘𝐷) = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dilset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | dilset.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
3 | dilset.w | . . . 4 ⊢ 𝑊 = (WAtoms‘𝐾) | |
4 | dilset.m | . . . 4 ⊢ 𝑀 = (PAut‘𝐾) | |
5 | dilset.l | . . . 4 ⊢ 𝐿 = (Dil‘𝐾) | |
6 | 1, 2, 3, 4, 5 | dilfsetN 36762 | . . 3 ⊢ (𝐾 ∈ 𝐵 → 𝐿 = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)})) |
7 | 6 | fveq1d 6498 | . 2 ⊢ (𝐾 ∈ 𝐵 → (𝐿‘𝐷) = ((𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)})‘𝐷)) |
8 | fveq2 6496 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → (𝑊‘𝑑) = (𝑊‘𝐷)) | |
9 | 8 | sseq2d 3883 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (𝑥 ⊆ (𝑊‘𝑑) ↔ 𝑥 ⊆ (𝑊‘𝐷))) |
10 | 9 | imbi1d 334 | . . . . 5 ⊢ (𝑑 = 𝐷 → ((𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥) ↔ (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥))) |
11 | 10 | ralbidv 3141 | . . . 4 ⊢ (𝑑 = 𝐷 → (∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥) ↔ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥))) |
12 | 11 | rabbidv 3397 | . . 3 ⊢ (𝑑 = 𝐷 → {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)} = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
13 | eqid 2772 | . . 3 ⊢ (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)}) = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)}) | |
14 | 4 | fvexi 6510 | . . . 4 ⊢ 𝑀 ∈ V |
15 | 14 | rabex 5087 | . . 3 ⊢ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)} ∈ V |
16 | 12, 13, 15 | fvmpt 6593 | . 2 ⊢ (𝐷 ∈ 𝐴 → ((𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)})‘𝐷) = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
17 | 7, 16 | sylan9eq 2828 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐿‘𝐷) = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∀wral 3082 {crab 3086 ⊆ wss 3823 ↦ cmpt 5004 ‘cfv 6185 Atomscatm 35873 PSubSpcpsubsp 36106 WAtomscwpointsN 36596 PAutcpautN 36597 DilcdilN 36712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-dilN 36716 |
This theorem is referenced by: isdilN 36764 |
Copyright terms: Public domain | W3C validator |