Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsmsnidl | Structured version Visualization version GIF version |
Description: The product of the ring with a single element is a principal ideal. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
Ref | Expression |
---|---|
lsmsnpridl.1 | ⊢ 𝐵 = (Base‘𝑅) |
lsmsnpridl.2 | ⊢ 𝐺 = (mulGrp‘𝑅) |
lsmsnpridl.3 | ⊢ × = (LSSum‘𝐺) |
lsmsnpridl.4 | ⊢ 𝐾 = (RSpan‘𝑅) |
lsmsnpridl.5 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
lsmsnpridl.6 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
lsmsnidl | ⊢ (𝜑 → (𝐵 × {𝑋}) ∈ (LPIdeal‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmsnpridl.6 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | sneq 4580 | . . . . . 6 ⊢ (𝑦 = 𝑋 → {𝑦} = {𝑋}) | |
3 | 2 | fveq2d 6815 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝐾‘{𝑦}) = (𝐾‘{𝑋})) |
4 | 3 | eqeq2d 2747 | . . . 4 ⊢ (𝑦 = 𝑋 → ((𝐵 × {𝑋}) = (𝐾‘{𝑦}) ↔ (𝐵 × {𝑋}) = (𝐾‘{𝑋}))) |
5 | 4 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑦 = 𝑋) → ((𝐵 × {𝑋}) = (𝐾‘{𝑦}) ↔ (𝐵 × {𝑋}) = (𝐾‘{𝑋}))) |
6 | lsmsnpridl.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
7 | lsmsnpridl.2 | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑅) | |
8 | lsmsnpridl.3 | . . . 4 ⊢ × = (LSSum‘𝐺) | |
9 | lsmsnpridl.4 | . . . 4 ⊢ 𝐾 = (RSpan‘𝑅) | |
10 | lsmsnpridl.5 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
11 | 6, 7, 8, 9, 10, 1 | lsmsnpridl 31721 | . . 3 ⊢ (𝜑 → (𝐵 × {𝑋}) = (𝐾‘{𝑋})) |
12 | 1, 5, 11 | rspcedvd 3571 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 (𝐵 × {𝑋}) = (𝐾‘{𝑦})) |
13 | eqid 2736 | . . . 4 ⊢ (LPIdeal‘𝑅) = (LPIdeal‘𝑅) | |
14 | 13, 9, 6 | islpidl 20597 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝐵 × {𝑋}) ∈ (LPIdeal‘𝑅) ↔ ∃𝑦 ∈ 𝐵 (𝐵 × {𝑋}) = (𝐾‘{𝑦}))) |
15 | 10, 14 | syl 17 | . 2 ⊢ (𝜑 → ((𝐵 × {𝑋}) ∈ (LPIdeal‘𝑅) ↔ ∃𝑦 ∈ 𝐵 (𝐵 × {𝑋}) = (𝐾‘{𝑦}))) |
16 | 12, 15 | mpbird 256 | 1 ⊢ (𝜑 → (𝐵 × {𝑋}) ∈ (LPIdeal‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 {csn 4570 ‘cfv 6465 (class class class)co 7316 Basecbs 16986 LSSumclsm 19312 mulGrpcmgp 19792 Ringcrg 19855 RSpancrsp 20513 LPIdealclpidl 20592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-ress 17016 df-plusg 17049 df-mulr 17050 df-sca 17052 df-vsca 17053 df-ip 17054 df-0g 17226 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-grp 18653 df-minusg 18654 df-sbg 18655 df-subg 18825 df-lsm 19314 df-mgp 19793 df-ur 19810 df-ring 19857 df-subrg 20101 df-lmod 20205 df-lss 20274 df-lsp 20314 df-sra 20514 df-rgmod 20515 df-rsp 20517 df-lpidl 20594 |
This theorem is referenced by: mxidlprm 31775 |
Copyright terms: Public domain | W3C validator |