![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lpi0 | Structured version Visualization version GIF version |
Description: The zero ideal is always principal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lpival.p | ⊢ 𝑃 = (LPIdeal‘𝑅) |
lpi0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
lpi0 | ⊢ (𝑅 ∈ Ring → { 0 } ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | lpi0.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | ring0cl 18967 | . . 3 ⊢ (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅)) |
4 | eqid 2778 | . . . . 5 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
5 | 4, 2 | rsp0 19633 | . . . 4 ⊢ (𝑅 ∈ Ring → ((RSpan‘𝑅)‘{ 0 }) = { 0 }) |
6 | 5 | eqcomd 2784 | . . 3 ⊢ (𝑅 ∈ Ring → { 0 } = ((RSpan‘𝑅)‘{ 0 })) |
7 | sneq 4408 | . . . . 5 ⊢ (𝑔 = 0 → {𝑔} = { 0 }) | |
8 | 7 | fveq2d 6452 | . . . 4 ⊢ (𝑔 = 0 → ((RSpan‘𝑅)‘{𝑔}) = ((RSpan‘𝑅)‘{ 0 })) |
9 | 8 | rspceeqv 3529 | . . 3 ⊢ (( 0 ∈ (Base‘𝑅) ∧ { 0 } = ((RSpan‘𝑅)‘{ 0 })) → ∃𝑔 ∈ (Base‘𝑅){ 0 } = ((RSpan‘𝑅)‘{𝑔})) |
10 | 3, 6, 9 | syl2anc 579 | . 2 ⊢ (𝑅 ∈ Ring → ∃𝑔 ∈ (Base‘𝑅){ 0 } = ((RSpan‘𝑅)‘{𝑔})) |
11 | lpival.p | . . 3 ⊢ 𝑃 = (LPIdeal‘𝑅) | |
12 | 11, 4, 1 | islpidl 19654 | . 2 ⊢ (𝑅 ∈ Ring → ({ 0 } ∈ 𝑃 ↔ ∃𝑔 ∈ (Base‘𝑅){ 0 } = ((RSpan‘𝑅)‘{𝑔}))) |
13 | 10, 12 | mpbird 249 | 1 ⊢ (𝑅 ∈ Ring → { 0 } ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ∃wrex 3091 {csn 4398 ‘cfv 6137 Basecbs 16266 0gc0g 16497 Ringcrg 18945 RSpancrsp 19579 LPIdealclpidl 19649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-7 11448 df-8 11449 df-ndx 16269 df-slot 16270 df-base 16272 df-sets 16273 df-ress 16274 df-plusg 16362 df-mulr 16363 df-sca 16365 df-vsca 16366 df-ip 16367 df-0g 16499 df-mgm 17639 df-sgrp 17681 df-mnd 17692 df-grp 17823 df-subg 17986 df-mgp 18888 df-ur 18900 df-ring 18947 df-subrg 19181 df-lmod 19268 df-lss 19336 df-lsp 19378 df-sra 19580 df-rgmod 19581 df-rsp 19583 df-lpidl 19651 |
This theorem is referenced by: drnglpir 19661 zringlpir 20244 |
Copyright terms: Public domain | W3C validator |