Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpi0 Structured version   Visualization version   GIF version

Theorem lpi0 20020
 Description: The zero ideal is always principal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lpival.p 𝑃 = (LPIdeal‘𝑅)
lpi0.z 0 = (0g𝑅)
Assertion
Ref Expression
lpi0 (𝑅 ∈ Ring → { 0 } ∈ 𝑃)

Proof of Theorem lpi0
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 lpi0.z . . . 4 0 = (0g𝑅)
31, 2ring0cl 19322 . . 3 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
4 eqid 2824 . . . . 5 (RSpan‘𝑅) = (RSpan‘𝑅)
54, 2rsp0 19998 . . . 4 (𝑅 ∈ Ring → ((RSpan‘𝑅)‘{ 0 }) = { 0 })
65eqcomd 2830 . . 3 (𝑅 ∈ Ring → { 0 } = ((RSpan‘𝑅)‘{ 0 }))
7 sneq 4560 . . . . 5 (𝑔 = 0 → {𝑔} = { 0 })
87fveq2d 6665 . . . 4 (𝑔 = 0 → ((RSpan‘𝑅)‘{𝑔}) = ((RSpan‘𝑅)‘{ 0 }))
98rspceeqv 3624 . . 3 (( 0 ∈ (Base‘𝑅) ∧ { 0 } = ((RSpan‘𝑅)‘{ 0 })) → ∃𝑔 ∈ (Base‘𝑅){ 0 } = ((RSpan‘𝑅)‘{𝑔}))
103, 6, 9syl2anc 587 . 2 (𝑅 ∈ Ring → ∃𝑔 ∈ (Base‘𝑅){ 0 } = ((RSpan‘𝑅)‘{𝑔}))
11 lpival.p . . 3 𝑃 = (LPIdeal‘𝑅)
1211, 4, 1islpidl 20019 . 2 (𝑅 ∈ Ring → ({ 0 } ∈ 𝑃 ↔ ∃𝑔 ∈ (Base‘𝑅){ 0 } = ((RSpan‘𝑅)‘{𝑔})))
1310, 12mpbird 260 1 (𝑅 ∈ Ring → { 0 } ∈ 𝑃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2115  ∃wrex 3134  {csn 4550  ‘cfv 6343  Basecbs 16483  0gc0g 16713  Ringcrg 19297  RSpancrsp 19943  LPIdealclpidl 20014 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-subg 18276  df-mgp 19240  df-ur 19252  df-ring 19299  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-sra 19944  df-rgmod 19945  df-rsp 19947  df-lpidl 20016 This theorem is referenced by:  drnglpir  20026  zringlpir  20636
 Copyright terms: Public domain W3C validator