| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1lpir | Structured version Visualization version GIF version | ||
| Description: The ring of polynomials over a division ring has the principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| Ref | Expression |
|---|---|
| ply1lpir.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| Ref | Expression |
|---|---|
| ply1lpir | ⊢ (𝑅 ∈ DivRing → 𝑃 ∈ LPIR) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngring 20644 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 2 | ply1lpir.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | 2 | ply1ring 22153 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑃 ∈ Ring) |
| 5 | eqid 2730 | . . . . . . . . 9 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 6 | eqid 2730 | . . . . . . . . 9 ⊢ (LIdeal‘𝑃) = (LIdeal‘𝑃) | |
| 7 | 5, 6 | lidlss 21142 | . . . . . . . 8 ⊢ (𝑖 ∈ (LIdeal‘𝑃) → 𝑖 ⊆ (Base‘𝑃)) |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → 𝑖 ⊆ (Base‘𝑃)) |
| 9 | eqid 2730 | . . . . . . . 8 ⊢ (idlGen1p‘𝑅) = (idlGen1p‘𝑅) | |
| 10 | 2, 9, 6 | ig1pcl 26104 | . . . . . . 7 ⊢ ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → ((idlGen1p‘𝑅)‘𝑖) ∈ 𝑖) |
| 11 | 8, 10 | sseldd 3933 | . . . . . 6 ⊢ ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → ((idlGen1p‘𝑅)‘𝑖) ∈ (Base‘𝑃)) |
| 12 | eqid 2730 | . . . . . . 7 ⊢ (RSpan‘𝑃) = (RSpan‘𝑃) | |
| 13 | 2, 9, 6, 12 | ig1prsp 26106 | . . . . . 6 ⊢ ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → 𝑖 = ((RSpan‘𝑃)‘{((idlGen1p‘𝑅)‘𝑖)})) |
| 14 | sneq 4584 | . . . . . . . 8 ⊢ (𝑗 = ((idlGen1p‘𝑅)‘𝑖) → {𝑗} = {((idlGen1p‘𝑅)‘𝑖)}) | |
| 15 | 14 | fveq2d 6821 | . . . . . . 7 ⊢ (𝑗 = ((idlGen1p‘𝑅)‘𝑖) → ((RSpan‘𝑃)‘{𝑗}) = ((RSpan‘𝑃)‘{((idlGen1p‘𝑅)‘𝑖)})) |
| 16 | 15 | rspceeqv 3598 | . . . . . 6 ⊢ ((((idlGen1p‘𝑅)‘𝑖) ∈ (Base‘𝑃) ∧ 𝑖 = ((RSpan‘𝑃)‘{((idlGen1p‘𝑅)‘𝑖)})) → ∃𝑗 ∈ (Base‘𝑃)𝑖 = ((RSpan‘𝑃)‘{𝑗})) |
| 17 | 11, 13, 16 | syl2anc 584 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → ∃𝑗 ∈ (Base‘𝑃)𝑖 = ((RSpan‘𝑃)‘{𝑗})) |
| 18 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → 𝑃 ∈ Ring) |
| 19 | eqid 2730 | . . . . . . 7 ⊢ (LPIdeal‘𝑃) = (LPIdeal‘𝑃) | |
| 20 | 19, 12, 5 | islpidl 21255 | . . . . . 6 ⊢ (𝑃 ∈ Ring → (𝑖 ∈ (LPIdeal‘𝑃) ↔ ∃𝑗 ∈ (Base‘𝑃)𝑖 = ((RSpan‘𝑃)‘{𝑗}))) |
| 21 | 18, 20 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → (𝑖 ∈ (LPIdeal‘𝑃) ↔ ∃𝑗 ∈ (Base‘𝑃)𝑖 = ((RSpan‘𝑃)‘{𝑗}))) |
| 22 | 17, 21 | mpbird 257 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → 𝑖 ∈ (LPIdeal‘𝑃)) |
| 23 | 22 | ex 412 | . . 3 ⊢ (𝑅 ∈ DivRing → (𝑖 ∈ (LIdeal‘𝑃) → 𝑖 ∈ (LPIdeal‘𝑃))) |
| 24 | 23 | ssrdv 3938 | . 2 ⊢ (𝑅 ∈ DivRing → (LIdeal‘𝑃) ⊆ (LPIdeal‘𝑃)) |
| 25 | 19, 6 | islpir2 21260 | . 2 ⊢ (𝑃 ∈ LPIR ↔ (𝑃 ∈ Ring ∧ (LIdeal‘𝑃) ⊆ (LPIdeal‘𝑃))) |
| 26 | 4, 24, 25 | sylanbrc 583 | 1 ⊢ (𝑅 ∈ DivRing → 𝑃 ∈ LPIR) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∃wrex 3054 ⊆ wss 3900 {csn 4574 ‘cfv 6477 Basecbs 17112 Ringcrg 20144 DivRingcdr 20637 LIdealclidl 21136 RSpancrsp 21137 LPIdealclpidl 21250 LPIRclpir 21251 Poly1cpl1 22082 idlGen1pcig1p 26055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-fzo 13547 df-seq 13901 df-hash 14230 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-hom 17177 df-cco 17178 df-0g 17337 df-gsum 17338 df-prds 17343 df-pws 17345 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-mulg 18973 df-subg 19028 df-ghm 19118 df-cntz 19222 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-cring 20147 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-invr 20299 df-subrng 20454 df-subrg 20478 df-rlreg 20602 df-drng 20639 df-lmod 20788 df-lss 20858 df-lsp 20898 df-sra 21100 df-rgmod 21101 df-lidl 21138 df-rsp 21139 df-lpidl 21252 df-lpir 21253 df-cnfld 21285 df-ascl 21785 df-psr 21839 df-mvr 21840 df-mpl 21841 df-opsr 21843 df-psr1 22085 df-vr1 22086 df-ply1 22087 df-coe1 22088 df-mdeg 25980 df-deg1 25981 df-mon1 26056 df-uc1p 26057 df-q1p 26058 df-r1p 26059 df-ig1p 26060 |
| This theorem is referenced by: ply1pid 26108 |
| Copyright terms: Public domain | W3C validator |