| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1lpir | Structured version Visualization version GIF version | ||
| Description: The ring of polynomials over a division ring has the principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| Ref | Expression |
|---|---|
| ply1lpir.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| Ref | Expression |
|---|---|
| ply1lpir | ⊢ (𝑅 ∈ DivRing → 𝑃 ∈ LPIR) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngring 20657 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 2 | ply1lpir.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | 2 | ply1ring 22166 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑃 ∈ Ring) |
| 5 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 6 | eqid 2731 | . . . . . . . . 9 ⊢ (LIdeal‘𝑃) = (LIdeal‘𝑃) | |
| 7 | 5, 6 | lidlss 21155 | . . . . . . . 8 ⊢ (𝑖 ∈ (LIdeal‘𝑃) → 𝑖 ⊆ (Base‘𝑃)) |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → 𝑖 ⊆ (Base‘𝑃)) |
| 9 | eqid 2731 | . . . . . . . 8 ⊢ (idlGen1p‘𝑅) = (idlGen1p‘𝑅) | |
| 10 | 2, 9, 6 | ig1pcl 26117 | . . . . . . 7 ⊢ ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → ((idlGen1p‘𝑅)‘𝑖) ∈ 𝑖) |
| 11 | 8, 10 | sseldd 3930 | . . . . . 6 ⊢ ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → ((idlGen1p‘𝑅)‘𝑖) ∈ (Base‘𝑃)) |
| 12 | eqid 2731 | . . . . . . 7 ⊢ (RSpan‘𝑃) = (RSpan‘𝑃) | |
| 13 | 2, 9, 6, 12 | ig1prsp 26119 | . . . . . 6 ⊢ ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → 𝑖 = ((RSpan‘𝑃)‘{((idlGen1p‘𝑅)‘𝑖)})) |
| 14 | sneq 4585 | . . . . . . . 8 ⊢ (𝑗 = ((idlGen1p‘𝑅)‘𝑖) → {𝑗} = {((idlGen1p‘𝑅)‘𝑖)}) | |
| 15 | 14 | fveq2d 6832 | . . . . . . 7 ⊢ (𝑗 = ((idlGen1p‘𝑅)‘𝑖) → ((RSpan‘𝑃)‘{𝑗}) = ((RSpan‘𝑃)‘{((idlGen1p‘𝑅)‘𝑖)})) |
| 16 | 15 | rspceeqv 3595 | . . . . . 6 ⊢ ((((idlGen1p‘𝑅)‘𝑖) ∈ (Base‘𝑃) ∧ 𝑖 = ((RSpan‘𝑃)‘{((idlGen1p‘𝑅)‘𝑖)})) → ∃𝑗 ∈ (Base‘𝑃)𝑖 = ((RSpan‘𝑃)‘{𝑗})) |
| 17 | 11, 13, 16 | syl2anc 584 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → ∃𝑗 ∈ (Base‘𝑃)𝑖 = ((RSpan‘𝑃)‘{𝑗})) |
| 18 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → 𝑃 ∈ Ring) |
| 19 | eqid 2731 | . . . . . . 7 ⊢ (LPIdeal‘𝑃) = (LPIdeal‘𝑃) | |
| 20 | 19, 12, 5 | islpidl 21268 | . . . . . 6 ⊢ (𝑃 ∈ Ring → (𝑖 ∈ (LPIdeal‘𝑃) ↔ ∃𝑗 ∈ (Base‘𝑃)𝑖 = ((RSpan‘𝑃)‘{𝑗}))) |
| 21 | 18, 20 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → (𝑖 ∈ (LPIdeal‘𝑃) ↔ ∃𝑗 ∈ (Base‘𝑃)𝑖 = ((RSpan‘𝑃)‘{𝑗}))) |
| 22 | 17, 21 | mpbird 257 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → 𝑖 ∈ (LPIdeal‘𝑃)) |
| 23 | 22 | ex 412 | . . 3 ⊢ (𝑅 ∈ DivRing → (𝑖 ∈ (LIdeal‘𝑃) → 𝑖 ∈ (LPIdeal‘𝑃))) |
| 24 | 23 | ssrdv 3935 | . 2 ⊢ (𝑅 ∈ DivRing → (LIdeal‘𝑃) ⊆ (LPIdeal‘𝑃)) |
| 25 | 19, 6 | islpir2 21273 | . 2 ⊢ (𝑃 ∈ LPIR ↔ (𝑃 ∈ Ring ∧ (LIdeal‘𝑃) ⊆ (LPIdeal‘𝑃))) |
| 26 | 4, 24, 25 | sylanbrc 583 | 1 ⊢ (𝑅 ∈ DivRing → 𝑃 ∈ LPIR) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 {csn 4575 ‘cfv 6487 Basecbs 17126 Ringcrg 20157 DivRingcdr 20650 LIdealclidl 21149 RSpancrsp 21150 LPIdealclpidl 21263 LPIRclpir 21264 Poly1cpl1 22095 idlGen1pcig1p 26068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 ax-addf 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9252 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-fz 13414 df-fzo 13561 df-seq 13915 df-hash 14244 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-starv 17182 df-sca 17183 df-vsca 17184 df-ip 17185 df-tset 17186 df-ple 17187 df-ds 17189 df-unif 17190 df-hom 17191 df-cco 17192 df-0g 17351 df-gsum 17352 df-prds 17357 df-pws 17359 df-mre 17494 df-mrc 17495 df-acs 17497 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-mhm 18697 df-submnd 18698 df-grp 18855 df-minusg 18856 df-sbg 18857 df-mulg 18987 df-subg 19042 df-ghm 19131 df-cntz 19235 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-cring 20160 df-oppr 20261 df-dvdsr 20281 df-unit 20282 df-invr 20312 df-subrng 20467 df-subrg 20491 df-rlreg 20615 df-drng 20652 df-lmod 20801 df-lss 20871 df-lsp 20911 df-sra 21113 df-rgmod 21114 df-lidl 21151 df-rsp 21152 df-lpidl 21265 df-lpir 21266 df-cnfld 21298 df-ascl 21798 df-psr 21852 df-mvr 21853 df-mpl 21854 df-opsr 21856 df-psr1 22098 df-vr1 22099 df-ply1 22100 df-coe1 22101 df-mdeg 25993 df-deg1 25994 df-mon1 26069 df-uc1p 26070 df-q1p 26071 df-r1p 26072 df-ig1p 26073 |
| This theorem is referenced by: ply1pid 26121 |
| Copyright terms: Public domain | W3C validator |