![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isxmetd | Structured version Visualization version GIF version |
Description: Properties that determine an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 9-Apr-2024.) |
Ref | Expression |
---|---|
isxmetd.0 | β’ (π β π β π) |
isxmetd.1 | β’ (π β π·:(π Γ π)βΆβ*) |
isxmetd.2 | β’ ((π β§ (π₯ β π β§ π¦ β π)) β ((π₯π·π¦) = 0 β π₯ = π¦)) |
isxmetd.3 | β’ ((π β§ (π₯ β π β§ π¦ β π β§ π§ β π)) β (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))) |
Ref | Expression |
---|---|
isxmetd | β’ (π β π· β (βMetβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isxmetd.1 | . 2 β’ (π β π·:(π Γ π)βΆβ*) | |
2 | isxmetd.2 | . . . 4 β’ ((π β§ (π₯ β π β§ π¦ β π)) β ((π₯π·π¦) = 0 β π₯ = π¦)) | |
3 | isxmetd.3 | . . . . . . 7 β’ ((π β§ (π₯ β π β§ π¦ β π β§ π§ β π)) β (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))) | |
4 | 3 | 3exp2 1354 | . . . . . 6 β’ (π β (π₯ β π β (π¦ β π β (π§ β π β (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) |
5 | 4 | imp32 419 | . . . . 5 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π§ β π β (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))) |
6 | 5 | ralrimiv 3145 | . . . 4 β’ ((π β§ (π₯ β π β§ π¦ β π)) β βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))) |
7 | 2, 6 | jca 512 | . . 3 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))) |
8 | 7 | ralrimivva 3200 | . 2 β’ (π β βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))) |
9 | isxmetd.0 | . . 3 β’ (π β π β π) | |
10 | isxmet 23829 | . . 3 β’ (π β π β (π· β (βMetβπ) β (π·:(π Γ π)βΆβ* β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) | |
11 | 9, 10 | syl 17 | . 2 β’ (π β (π· β (βMetβπ) β (π·:(π Γ π)βΆβ* β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) |
12 | 1, 8, 11 | mpbir2and 711 | 1 β’ (π β π· β (βMetβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 class class class wbr 5148 Γ cxp 5674 βΆwf 6539 βcfv 6543 (class class class)co 7408 0cc0 11109 β*cxr 11246 β€ cle 11248 +π cxad 13089 βMetcxmet 20928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-map 8821 df-xr 11251 df-xmet 20936 |
This theorem is referenced by: isxmet2d 23832 xmetres2 23866 comet 24021 |
Copyright terms: Public domain | W3C validator |