MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmet Structured version   Visualization version   GIF version

Theorem cnmet 24687
Description: The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.)
Assertion
Ref Expression
cnmet (abs ∘ − ) ∈ (Met‘ℂ)

Proof of Theorem cnmet
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 11219 . 2 ℂ ∈ V
2 absf 15316 . . 3 abs:ℂ⟶ℝ
3 subf 11492 . . 3 − :(ℂ × ℂ)⟶ℂ
4 fco 6747 . . 3 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
52, 3, 4mp2an 691 . 2 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
6 subcl 11489 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑦) ∈ ℂ)
76abs00ad 15269 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥𝑦)) = 0 ↔ (𝑥𝑦) = 0))
8 eqid 2728 . . . . . 6 (abs ∘ − ) = (abs ∘ − )
98cnmetdval 24686 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
109eqcomd 2734 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥𝑦)) = (𝑥(abs ∘ − )𝑦))
1110eqeq1d 2730 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥𝑦)) = 0 ↔ (𝑥(abs ∘ − )𝑦) = 0))
12 subeq0 11516 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
137, 11, 123bitr3d 309 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥(abs ∘ − )𝑦) = 0 ↔ 𝑥 = 𝑦))
14 abs3dif 15310 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥𝑦)) ≤ ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝑦))))
15 abssub 15305 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥𝑧)) = (abs‘(𝑧𝑥)))
1615oveq1d 7435 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝑦))) = ((abs‘(𝑧𝑥)) + (abs‘(𝑧𝑦))))
17163adant2 1129 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝑦))) = ((abs‘(𝑧𝑥)) + (abs‘(𝑧𝑦))))
1814, 17breqtrd 5174 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥𝑦)) ≤ ((abs‘(𝑧𝑥)) + (abs‘(𝑧𝑦))))
1993adant3 1130 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
208cnmetdval 24686 . . . . . 6 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧(abs ∘ − )𝑥) = (abs‘(𝑧𝑥)))
21203adant3 1130 . . . . 5 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑥) = (abs‘(𝑧𝑥)))
228cnmetdval 24686 . . . . . 6 ((𝑧 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑦) = (abs‘(𝑧𝑦)))
23223adant2 1129 . . . . 5 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑦) = (abs‘(𝑧𝑦)))
2421, 23oveq12d 7438 . . . 4 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦)) = ((abs‘(𝑧𝑥)) + (abs‘(𝑧𝑦))))
25243coml 1125 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦)) = ((abs‘(𝑧𝑥)) + (abs‘(𝑧𝑦))))
2618, 19, 253brtr4d 5180 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) ≤ ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦)))
271, 5, 13, 26ismeti 24230 1 (abs ∘ − ) ∈ (Met‘ℂ)
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1085   = wceq 1534  wcel 2099   × cxp 5676  ccom 5682  wf 6544  cfv 6548  (class class class)co 7420  cc 11136  cr 11137  0cc0 11138   + caddc 11141  cle 11279  cmin 11474  abscabs 15213  Metcmet 21264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-map 8846  df-en 8964  df-dom 8965  df-sdom 8966  df-sup 9465  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-seq 13999  df-exp 14059  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-met 21272
This theorem is referenced by:  cnxmet  24688  cnfldms  24691  remet  24705  xrsdsre  24725  lebnumii  24891  cncmet  25249  cncms  25282  ovolctb  25418  dvlog2lem  26585  cnrrext  33611  cntotbnd  37269  iccbnd  37313  sblpnf  43747
  Copyright terms: Public domain W3C validator