| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmet | Structured version Visualization version GIF version | ||
| Description: The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.) |
| Ref | Expression |
|---|---|
| cnmet | ⊢ (abs ∘ − ) ∈ (Met‘ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11149 | . 2 ⊢ ℂ ∈ V | |
| 2 | absf 15304 | . . 3 ⊢ abs:ℂ⟶ℝ | |
| 3 | subf 11423 | . . 3 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 4 | fco 6712 | . . 3 ⊢ ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℝ |
| 6 | subcl 11420 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) ∈ ℂ) | |
| 7 | 6 | abs00ad 15256 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 − 𝑦)) = 0 ↔ (𝑥 − 𝑦) = 0)) |
| 8 | eqid 2729 | . . . . . 6 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
| 9 | 8 | cnmetdval 24658 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥 − 𝑦))) |
| 10 | 9 | eqcomd 2735 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 − 𝑦)) = (𝑥(abs ∘ − )𝑦)) |
| 11 | 10 | eqeq1d 2731 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 − 𝑦)) = 0 ↔ (𝑥(abs ∘ − )𝑦) = 0)) |
| 12 | subeq0 11448 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 − 𝑦) = 0 ↔ 𝑥 = 𝑦)) | |
| 13 | 7, 11, 12 | 3bitr3d 309 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥(abs ∘ − )𝑦) = 0 ↔ 𝑥 = 𝑦)) |
| 14 | abs3dif 15298 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥 − 𝑦)) ≤ ((abs‘(𝑥 − 𝑧)) + (abs‘(𝑧 − 𝑦)))) | |
| 15 | abssub 15293 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥 − 𝑧)) = (abs‘(𝑧 − 𝑥))) | |
| 16 | 15 | oveq1d 7402 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑥 − 𝑧)) + (abs‘(𝑧 − 𝑦))) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
| 17 | 16 | 3adant2 1131 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑥 − 𝑧)) + (abs‘(𝑧 − 𝑦))) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
| 18 | 14, 17 | breqtrd 5133 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥 − 𝑦)) ≤ ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
| 19 | 9 | 3adant3 1132 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥 − 𝑦))) |
| 20 | 8 | cnmetdval 24658 | . . . . . 6 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧(abs ∘ − )𝑥) = (abs‘(𝑧 − 𝑥))) |
| 21 | 20 | 3adant3 1132 | . . . . 5 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑥) = (abs‘(𝑧 − 𝑥))) |
| 22 | 8 | cnmetdval 24658 | . . . . . 6 ⊢ ((𝑧 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑦) = (abs‘(𝑧 − 𝑦))) |
| 23 | 22 | 3adant2 1131 | . . . . 5 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑦) = (abs‘(𝑧 − 𝑦))) |
| 24 | 21, 23 | oveq12d 7405 | . . . 4 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦)) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
| 25 | 24 | 3coml 1127 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦)) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
| 26 | 18, 19, 25 | 3brtr4d 5139 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) ≤ ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦))) |
| 27 | 1, 5, 13, 26 | ismeti 24213 | 1 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 × cxp 5636 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 + caddc 11071 ≤ cle 11209 − cmin 11405 abscabs 15200 Metcmet 21250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-met 21258 |
| This theorem is referenced by: cnxmet 24660 cnfldms 24663 remet 24678 xrsdsre 24699 lebnumii 24865 cncmet 25222 cncms 25255 ovolctb 25391 dvlog2lem 26561 cnrrext 34000 cntotbnd 37790 iccbnd 37834 sblpnf 44299 |
| Copyright terms: Public domain | W3C validator |