| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmet | Structured version Visualization version GIF version | ||
| Description: The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.) |
| Ref | Expression |
|---|---|
| cnmet | ⊢ (abs ∘ − ) ∈ (Met‘ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11087 | . 2 ⊢ ℂ ∈ V | |
| 2 | absf 15245 | . . 3 ⊢ abs:ℂ⟶ℝ | |
| 3 | subf 11362 | . . 3 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 4 | fco 6675 | . . 3 ⊢ ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℝ |
| 6 | subcl 11359 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) ∈ ℂ) | |
| 7 | 6 | abs00ad 15197 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 − 𝑦)) = 0 ↔ (𝑥 − 𝑦) = 0)) |
| 8 | eqid 2731 | . . . . . 6 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
| 9 | 8 | cnmetdval 24685 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥 − 𝑦))) |
| 10 | 9 | eqcomd 2737 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 − 𝑦)) = (𝑥(abs ∘ − )𝑦)) |
| 11 | 10 | eqeq1d 2733 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 − 𝑦)) = 0 ↔ (𝑥(abs ∘ − )𝑦) = 0)) |
| 12 | subeq0 11387 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 − 𝑦) = 0 ↔ 𝑥 = 𝑦)) | |
| 13 | 7, 11, 12 | 3bitr3d 309 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥(abs ∘ − )𝑦) = 0 ↔ 𝑥 = 𝑦)) |
| 14 | abs3dif 15239 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥 − 𝑦)) ≤ ((abs‘(𝑥 − 𝑧)) + (abs‘(𝑧 − 𝑦)))) | |
| 15 | abssub 15234 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥 − 𝑧)) = (abs‘(𝑧 − 𝑥))) | |
| 16 | 15 | oveq1d 7361 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑥 − 𝑧)) + (abs‘(𝑧 − 𝑦))) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
| 17 | 16 | 3adant2 1131 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑥 − 𝑧)) + (abs‘(𝑧 − 𝑦))) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
| 18 | 14, 17 | breqtrd 5115 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (abs‘(𝑥 − 𝑦)) ≤ ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
| 19 | 9 | 3adant3 1132 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥 − 𝑦))) |
| 20 | 8 | cnmetdval 24685 | . . . . . 6 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧(abs ∘ − )𝑥) = (abs‘(𝑧 − 𝑥))) |
| 21 | 20 | 3adant3 1132 | . . . . 5 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑥) = (abs‘(𝑧 − 𝑥))) |
| 22 | 8 | cnmetdval 24685 | . . . . . 6 ⊢ ((𝑧 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑦) = (abs‘(𝑧 − 𝑦))) |
| 23 | 22 | 3adant2 1131 | . . . . 5 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧(abs ∘ − )𝑦) = (abs‘(𝑧 − 𝑦))) |
| 24 | 21, 23 | oveq12d 7364 | . . . 4 ⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦)) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
| 25 | 24 | 3coml 1127 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦)) = ((abs‘(𝑧 − 𝑥)) + (abs‘(𝑧 − 𝑦)))) |
| 26 | 18, 19, 25 | 3brtr4d 5121 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) ≤ ((𝑧(abs ∘ − )𝑥) + (𝑧(abs ∘ − )𝑦))) |
| 27 | 1, 5, 13, 26 | ismeti 24240 | 1 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 × cxp 5612 ∘ ccom 5618 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 + caddc 11009 ≤ cle 11147 − cmin 11344 abscabs 15141 Metcmet 21277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-met 21285 |
| This theorem is referenced by: cnxmet 24687 cnfldms 24690 remet 24705 xrsdsre 24726 lebnumii 24892 cncmet 25249 cncms 25282 ovolctb 25418 dvlog2lem 26588 cnrrext 34023 cntotbnd 37846 iccbnd 37890 sblpnf 44413 |
| Copyright terms: Public domain | W3C validator |