MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsmetlem Structured version   Visualization version   GIF version

Theorem imsmetlem 30670
Description: Lemma for imsmet 30671. (Contributed by NM, 29-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsmetlem.1 𝑋 = (BaseSet‘𝑈)
imsmetlem.2 𝐺 = ( +𝑣𝑈)
imsmetlem.7 𝑀 = (inv‘𝐺)
imsmetlem.4 𝑆 = ( ·𝑠OLD𝑈)
imsmetlem.5 𝑍 = (0vec𝑈)
imsmetlem.6 𝑁 = (normCV𝑈)
imsmetlem.8 𝐷 = (IndMet‘𝑈)
imsmetlem.9 𝑈 ∈ NrmCVec
Assertion
Ref Expression
imsmetlem 𝐷 ∈ (Met‘𝑋)

Proof of Theorem imsmetlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imsmetlem.1 . . 3 𝑋 = (BaseSet‘𝑈)
21fvexi 6836 . 2 𝑋 ∈ V
3 imsmetlem.9 . . 3 𝑈 ∈ NrmCVec
4 imsmetlem.8 . . . 4 𝐷 = (IndMet‘𝑈)
51, 4imsdf 30669 . . 3 (𝑈 ∈ NrmCVec → 𝐷:(𝑋 × 𝑋)⟶ℝ)
63, 5ax-mp 5 . 2 𝐷:(𝑋 × 𝑋)⟶ℝ
7 imsmetlem.2 . . . . . 6 𝐺 = ( +𝑣𝑈)
8 imsmetlem.4 . . . . . 6 𝑆 = ( ·𝑠OLD𝑈)
9 imsmetlem.6 . . . . . 6 𝑁 = (normCV𝑈)
101, 7, 8, 9, 4imsdval2 30667 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑁‘(𝑥𝐺(-1𝑆𝑦))))
113, 10mp3an1 1450 . . . 4 ((𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑁‘(𝑥𝐺(-1𝑆𝑦))))
1211eqeq1d 2733 . . 3 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ (𝑁‘(𝑥𝐺(-1𝑆𝑦))) = 0))
13 neg1cn 12110 . . . . . 6 -1 ∈ ℂ
141, 8nvscl 30606 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝑦𝑋) → (-1𝑆𝑦) ∈ 𝑋)
153, 13, 14mp3an12 1453 . . . . 5 (𝑦𝑋 → (-1𝑆𝑦) ∈ 𝑋)
161, 7nvgcl 30600 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋)
173, 16mp3an1 1450 . . . . 5 ((𝑥𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋)
1815, 17sylan2 593 . . . 4 ((𝑥𝑋𝑦𝑋) → (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋)
19 imsmetlem.5 . . . . 5 𝑍 = (0vec𝑈)
201, 19, 9nvz 30649 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋) → ((𝑁‘(𝑥𝐺(-1𝑆𝑦))) = 0 ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
213, 18, 20sylancr 587 . . 3 ((𝑥𝑋𝑦𝑋) → ((𝑁‘(𝑥𝐺(-1𝑆𝑦))) = 0 ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
221, 19nvzcl 30614 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝑍𝑋)
233, 22ax-mp 5 . . . . . 6 𝑍𝑋
241, 7nvrcan 30604 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ((𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋𝑍𝑋𝑦𝑋)) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
253, 24mpan 690 . . . . . 6 (((𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋𝑍𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
2623, 25mp3an2 1451 . . . . 5 (((𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
2718, 26sylancom 588 . . . 4 ((𝑥𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
28 simpl 482 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → 𝑥𝑋)
2915adantl 481 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → (-1𝑆𝑦) ∈ 𝑋)
30 simpr 484 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → 𝑦𝑋)
311, 7nvass 30602 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋𝑦𝑋)) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑥𝐺((-1𝑆𝑦)𝐺𝑦)))
323, 31mpan 690 . . . . . . 7 ((𝑥𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑥𝐺((-1𝑆𝑦)𝐺𝑦)))
3328, 29, 30, 32syl3anc 1373 . . . . . 6 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑥𝐺((-1𝑆𝑦)𝐺𝑦)))
341, 7, 8, 19nvlinv 30632 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → ((-1𝑆𝑦)𝐺𝑦) = 𝑍)
353, 34mpan 690 . . . . . . . 8 (𝑦𝑋 → ((-1𝑆𝑦)𝐺𝑦) = 𝑍)
3635adantl 481 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → ((-1𝑆𝑦)𝐺𝑦) = 𝑍)
3736oveq2d 7362 . . . . . 6 ((𝑥𝑋𝑦𝑋) → (𝑥𝐺((-1𝑆𝑦)𝐺𝑦)) = (𝑥𝐺𝑍))
381, 7, 19nv0rid 30615 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → (𝑥𝐺𝑍) = 𝑥)
393, 38mpan 690 . . . . . . 7 (𝑥𝑋 → (𝑥𝐺𝑍) = 𝑥)
4039adantr 480 . . . . . 6 ((𝑥𝑋𝑦𝑋) → (𝑥𝐺𝑍) = 𝑥)
4133, 37, 403eqtrd 2770 . . . . 5 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = 𝑥)
421, 7, 19nv0lid 30616 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → (𝑍𝐺𝑦) = 𝑦)
433, 42mpan 690 . . . . . 6 (𝑦𝑋 → (𝑍𝐺𝑦) = 𝑦)
4443adantl 481 . . . . 5 ((𝑥𝑋𝑦𝑋) → (𝑍𝐺𝑦) = 𝑦)
4541, 44eqeq12d 2747 . . . 4 ((𝑥𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ 𝑥 = 𝑦))
4627, 45bitr3d 281 . . 3 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑦)) = 𝑍𝑥 = 𝑦))
4712, 21, 463bitrd 305 . 2 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
48 simpr 484 . . . . . . 7 ((𝑧𝑋𝑥𝑋) → 𝑥𝑋)
491, 8nvscl 30606 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝑧𝑋) → (-1𝑆𝑧) ∈ 𝑋)
503, 13, 49mp3an12 1453 . . . . . . . 8 (𝑧𝑋 → (-1𝑆𝑧) ∈ 𝑋)
5150adantr 480 . . . . . . 7 ((𝑧𝑋𝑥𝑋) → (-1𝑆𝑧) ∈ 𝑋)
521, 7nvgcl 30600 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋)
533, 52mp3an1 1450 . . . . . . 7 ((𝑥𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋)
5448, 51, 53syl2anc 584 . . . . . 6 ((𝑧𝑋𝑥𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋)
55543adant3 1132 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋)
561, 7nvgcl 30600 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋)
573, 56mp3an1 1450 . . . . . . 7 ((𝑧𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋)
5815, 57sylan2 593 . . . . . 6 ((𝑧𝑋𝑦𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋)
59583adant2 1131 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋)
601, 7, 9nvtri 30650 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋 ∧ (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) ≤ ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦)))))
613, 60mp3an1 1450 . . . . 5 (((𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋 ∧ (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) ≤ ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦)))))
6255, 59, 61syl2anc 584 . . . 4 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) ≤ ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦)))))
63113adant1 1130 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑁‘(𝑥𝐺(-1𝑆𝑦))))
64 simp1 1136 . . . . . . . 8 ((𝑧𝑋𝑥𝑋𝑦𝑋) → 𝑧𝑋)
65153ad2ant3 1135 . . . . . . . 8 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (-1𝑆𝑦) ∈ 𝑋)
661, 7nvass 30602 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ ((𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋𝑧𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋)) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦))))
673, 66mpan 690 . . . . . . . 8 (((𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋𝑧𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦))))
6855, 64, 65, 67syl3anc 1373 . . . . . . 7 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦))))
69 simpl 482 . . . . . . . . . . 11 ((𝑧𝑋𝑥𝑋) → 𝑧𝑋)
701, 7nvass 30602 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋𝑧𝑋)) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = (𝑥𝐺((-1𝑆𝑧)𝐺𝑧)))
713, 70mpan 690 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋𝑧𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = (𝑥𝐺((-1𝑆𝑧)𝐺𝑧)))
7248, 51, 69, 71syl3anc 1373 . . . . . . . . . 10 ((𝑧𝑋𝑥𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = (𝑥𝐺((-1𝑆𝑧)𝐺𝑧)))
731, 7, 8, 19nvlinv 30632 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → ((-1𝑆𝑧)𝐺𝑧) = 𝑍)
743, 73mpan 690 . . . . . . . . . . . 12 (𝑧𝑋 → ((-1𝑆𝑧)𝐺𝑧) = 𝑍)
7574adantr 480 . . . . . . . . . . 11 ((𝑧𝑋𝑥𝑋) → ((-1𝑆𝑧)𝐺𝑧) = 𝑍)
7675oveq2d 7362 . . . . . . . . . 10 ((𝑧𝑋𝑥𝑋) → (𝑥𝐺((-1𝑆𝑧)𝐺𝑧)) = (𝑥𝐺𝑍))
7739adantl 481 . . . . . . . . . 10 ((𝑧𝑋𝑥𝑋) → (𝑥𝐺𝑍) = 𝑥)
7872, 76, 773eqtrd 2770 . . . . . . . . 9 ((𝑧𝑋𝑥𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = 𝑥)
79783adant3 1132 . . . . . . . 8 ((𝑧𝑋𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = 𝑥)
8079oveq1d 7361 . . . . . . 7 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = (𝑥𝐺(-1𝑆𝑦)))
8168, 80eqtr3d 2768 . . . . . 6 ((𝑧𝑋𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦))) = (𝑥𝐺(-1𝑆𝑦)))
8281fveq2d 6826 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) = (𝑁‘(𝑥𝐺(-1𝑆𝑦))))
8363, 82eqtr4d 2769 . . . 4 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))))
841, 7, 8, 9, 4imsdval2 30667 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋𝑥𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑧𝐺(-1𝑆𝑥))))
853, 84mp3an1 1450 . . . . . . 7 ((𝑧𝑋𝑥𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑧𝐺(-1𝑆𝑥))))
861, 7, 8, 9nvdif 30646 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋𝑥𝑋) → (𝑁‘(𝑧𝐺(-1𝑆𝑥))) = (𝑁‘(𝑥𝐺(-1𝑆𝑧))))
873, 86mp3an1 1450 . . . . . . 7 ((𝑧𝑋𝑥𝑋) → (𝑁‘(𝑧𝐺(-1𝑆𝑥))) = (𝑁‘(𝑥𝐺(-1𝑆𝑧))))
8885, 87eqtrd 2766 . . . . . 6 ((𝑧𝑋𝑥𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑥𝐺(-1𝑆𝑧))))
89883adant3 1132 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑥𝐺(-1𝑆𝑧))))
901, 7, 8, 9, 4imsdval2 30667 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋𝑦𝑋) → (𝑧𝐷𝑦) = (𝑁‘(𝑧𝐺(-1𝑆𝑦))))
913, 90mp3an1 1450 . . . . . 6 ((𝑧𝑋𝑦𝑋) → (𝑧𝐷𝑦) = (𝑁‘(𝑧𝐺(-1𝑆𝑦))))
92913adant2 1131 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑧𝐷𝑦) = (𝑁‘(𝑧𝐺(-1𝑆𝑦))))
9389, 92oveq12d 7364 . . . 4 ((𝑧𝑋𝑥𝑋𝑦𝑋) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦)))))
9462, 83, 933brtr4d 5121 . . 3 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
95943coml 1127 . 2 ((𝑥𝑋𝑦𝑋𝑧𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
962, 6, 47, 95ismeti 24240 1 𝐷 ∈ (Met‘𝑋)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089   × cxp 5612  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009  cle 11147  -cneg 11345  Metcmet 21277  invcgn 30471  NrmCVeccnv 30564   +𝑣 cpv 30565  BaseSetcba 30566   ·𝑠OLD cns 30567  0veccn0v 30568  normCVcnmcv 30570  IndMetcims 30571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-met 21285  df-grpo 30473  df-gid 30474  df-ginv 30475  df-gdiv 30476  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-vs 30579  df-nmcv 30580  df-ims 30581
This theorem is referenced by:  imsmet  30671
  Copyright terms: Public domain W3C validator