Step | Hyp | Ref
| Expression |
1 | | imsmetlem.1 |
. . 3
⊢ 𝑋 = (BaseSet‘𝑈) |
2 | 1 | fvexi 6782 |
. 2
⊢ 𝑋 ∈ V |
3 | | imsmetlem.9 |
. . 3
⊢ 𝑈 ∈ NrmCVec |
4 | | imsmetlem.8 |
. . . 4
⊢ 𝐷 = (IndMet‘𝑈) |
5 | 1, 4 | imsdf 29030 |
. . 3
⊢ (𝑈 ∈ NrmCVec → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
6 | 3, 5 | ax-mp 5 |
. 2
⊢ 𝐷:(𝑋 × 𝑋)⟶ℝ |
7 | | imsmetlem.2 |
. . . . . 6
⊢ 𝐺 = ( +𝑣
‘𝑈) |
8 | | imsmetlem.4 |
. . . . . 6
⊢ 𝑆 = (
·𝑠OLD ‘𝑈) |
9 | | imsmetlem.6 |
. . . . . 6
⊢ 𝑁 =
(normCV‘𝑈) |
10 | 1, 7, 8, 9, 4 | imsdval2 29028 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) = (𝑁‘(𝑥𝐺(-1𝑆𝑦)))) |
11 | 3, 10 | mp3an1 1446 |
. . . 4
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) = (𝑁‘(𝑥𝐺(-1𝑆𝑦)))) |
12 | 11 | eqeq1d 2741 |
. . 3
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) = 0 ↔ (𝑁‘(𝑥𝐺(-1𝑆𝑦))) = 0)) |
13 | | neg1cn 12070 |
. . . . . 6
⊢ -1 ∈
ℂ |
14 | 1, 8 | nvscl 28967 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈
ℂ ∧ 𝑦 ∈
𝑋) → (-1𝑆𝑦) ∈ 𝑋) |
15 | 3, 13, 14 | mp3an12 1449 |
. . . . 5
⊢ (𝑦 ∈ 𝑋 → (-1𝑆𝑦) ∈ 𝑋) |
16 | 1, 7 | nvgcl 28961 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋) |
17 | 3, 16 | mp3an1 1446 |
. . . . 5
⊢ ((𝑥 ∈ 𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋) |
18 | 15, 17 | sylan2 592 |
. . . 4
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋) |
19 | | imsmetlem.5 |
. . . . 5
⊢ 𝑍 = (0vec‘𝑈) |
20 | 1, 19, 9 | nvz 29010 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋) → ((𝑁‘(𝑥𝐺(-1𝑆𝑦))) = 0 ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍)) |
21 | 3, 18, 20 | sylancr 586 |
. . 3
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑁‘(𝑥𝐺(-1𝑆𝑦))) = 0 ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍)) |
22 | 1, 19 | nvzcl 28975 |
. . . . . . 7
⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
23 | 3, 22 | ax-mp 5 |
. . . . . 6
⊢ 𝑍 ∈ 𝑋 |
24 | 1, 7 | nvrcan 28965 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ ((𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍)) |
25 | 3, 24 | mpan 686 |
. . . . . 6
⊢ (((𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍)) |
26 | 23, 25 | mp3an2 1447 |
. . . . 5
⊢ (((𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍)) |
27 | 18, 26 | sylancom 587 |
. . . 4
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍)) |
28 | | simpl 482 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
29 | 15 | adantl 481 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (-1𝑆𝑦) ∈ 𝑋) |
30 | | simpr 484 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
31 | 1, 7 | nvass 28963 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ 𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑥𝐺((-1𝑆𝑦)𝐺𝑦))) |
32 | 3, 31 | mpan 686 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑥𝐺((-1𝑆𝑦)𝐺𝑦))) |
33 | 28, 29, 30, 32 | syl3anc 1369 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑥𝐺((-1𝑆𝑦)𝐺𝑦))) |
34 | 1, 7, 8, 19 | nvlinv 28993 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋) → ((-1𝑆𝑦)𝐺𝑦) = 𝑍) |
35 | 3, 34 | mpan 686 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑋 → ((-1𝑆𝑦)𝐺𝑦) = 𝑍) |
36 | 35 | adantl 481 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((-1𝑆𝑦)𝐺𝑦) = 𝑍) |
37 | 36 | oveq2d 7284 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺((-1𝑆𝑦)𝐺𝑦)) = (𝑥𝐺𝑍)) |
38 | 1, 7, 19 | nv0rid 28976 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋) → (𝑥𝐺𝑍) = 𝑥) |
39 | 3, 38 | mpan 686 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 → (𝑥𝐺𝑍) = 𝑥) |
40 | 39 | adantr 480 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑍) = 𝑥) |
41 | 33, 37, 40 | 3eqtrd 2783 |
. . . . 5
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = 𝑥) |
42 | 1, 7, 19 | nv0lid 28977 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋) → (𝑍𝐺𝑦) = 𝑦) |
43 | 3, 42 | mpan 686 |
. . . . . 6
⊢ (𝑦 ∈ 𝑋 → (𝑍𝐺𝑦) = 𝑦) |
44 | 43 | adantl 481 |
. . . . 5
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑍𝐺𝑦) = 𝑦) |
45 | 41, 44 | eqeq12d 2755 |
. . . 4
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ 𝑥 = 𝑦)) |
46 | 27, 45 | bitr3d 280 |
. . 3
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐺(-1𝑆𝑦)) = 𝑍 ↔ 𝑥 = 𝑦)) |
47 | 12, 21, 46 | 3bitrd 304 |
. 2
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
48 | | simpr 484 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
49 | 1, 8 | nvscl 28967 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈
ℂ ∧ 𝑧 ∈
𝑋) → (-1𝑆𝑧) ∈ 𝑋) |
50 | 3, 13, 49 | mp3an12 1449 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑋 → (-1𝑆𝑧) ∈ 𝑋) |
51 | 50 | adantr 480 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (-1𝑆𝑧) ∈ 𝑋) |
52 | 1, 7 | nvgcl 28961 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋) |
53 | 3, 52 | mp3an1 1446 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋) |
54 | 48, 51, 53 | syl2anc 583 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋) |
55 | 54 | 3adant3 1130 |
. . . . 5
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋) |
56 | 1, 7 | nvgcl 28961 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋) |
57 | 3, 56 | mp3an1 1446 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋) |
58 | 15, 57 | sylan2 592 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋) |
59 | 58 | 3adant2 1129 |
. . . . 5
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋) |
60 | 1, 7, 9 | nvtri 29011 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋 ∧ (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) ≤ ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦))))) |
61 | 3, 60 | mp3an1 1446 |
. . . . 5
⊢ (((𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋 ∧ (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) ≤ ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦))))) |
62 | 55, 59, 61 | syl2anc 583 |
. . . 4
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) ≤ ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦))))) |
63 | 11 | 3adant1 1128 |
. . . . 5
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) = (𝑁‘(𝑥𝐺(-1𝑆𝑦)))) |
64 | | simp1 1134 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
65 | 15 | 3ad2ant3 1133 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (-1𝑆𝑦) ∈ 𝑋) |
66 | 1, 7 | nvass 28963 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ ((𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋)) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) |
67 | 3, 66 | mpan 686 |
. . . . . . . 8
⊢ (((𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) |
68 | 55, 64, 65, 67 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) |
69 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
70 | 1, 7 | nvass 28963 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ 𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = (𝑥𝐺((-1𝑆𝑧)𝐺𝑧))) |
71 | 3, 70 | mpan 686 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = (𝑥𝐺((-1𝑆𝑧)𝐺𝑧))) |
72 | 48, 51, 69, 71 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = (𝑥𝐺((-1𝑆𝑧)𝐺𝑧))) |
73 | 1, 7, 8, 19 | nvlinv 28993 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋) → ((-1𝑆𝑧)𝐺𝑧) = 𝑍) |
74 | 3, 73 | mpan 686 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝑋 → ((-1𝑆𝑧)𝐺𝑧) = 𝑍) |
75 | 74 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → ((-1𝑆𝑧)𝐺𝑧) = 𝑍) |
76 | 75 | oveq2d 7284 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑥𝐺((-1𝑆𝑧)𝐺𝑧)) = (𝑥𝐺𝑍)) |
77 | 39 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑥𝐺𝑍) = 𝑥) |
78 | 72, 76, 77 | 3eqtrd 2783 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = 𝑥) |
79 | 78 | 3adant3 1130 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = 𝑥) |
80 | 79 | oveq1d 7283 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = (𝑥𝐺(-1𝑆𝑦))) |
81 | 68, 80 | eqtr3d 2781 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦))) = (𝑥𝐺(-1𝑆𝑦))) |
82 | 81 | fveq2d 6772 |
. . . . 5
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) = (𝑁‘(𝑥𝐺(-1𝑆𝑦)))) |
83 | 63, 82 | eqtr4d 2782 |
. . . 4
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) = (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦))))) |
84 | 1, 7, 8, 9, 4 | imsdval2 29028 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑧𝐺(-1𝑆𝑥)))) |
85 | 3, 84 | mp3an1 1446 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑧𝐺(-1𝑆𝑥)))) |
86 | 1, 7, 8, 9 | nvdif 29007 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑧𝐺(-1𝑆𝑥))) = (𝑁‘(𝑥𝐺(-1𝑆𝑧)))) |
87 | 3, 86 | mp3an1 1446 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑧𝐺(-1𝑆𝑥))) = (𝑁‘(𝑥𝐺(-1𝑆𝑧)))) |
88 | 85, 87 | eqtrd 2779 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑥𝐺(-1𝑆𝑧)))) |
89 | 88 | 3adant3 1130 |
. . . . 5
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑥𝐺(-1𝑆𝑧)))) |
90 | 1, 7, 8, 9, 4 | imsdval2 29028 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑧𝐷𝑦) = (𝑁‘(𝑧𝐺(-1𝑆𝑦)))) |
91 | 3, 90 | mp3an1 1446 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑧𝐷𝑦) = (𝑁‘(𝑧𝐺(-1𝑆𝑦)))) |
92 | 91 | 3adant2 1129 |
. . . . 5
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑧𝐷𝑦) = (𝑁‘(𝑧𝐺(-1𝑆𝑦)))) |
93 | 89, 92 | oveq12d 7286 |
. . . 4
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦))))) |
94 | 62, 83, 93 | 3brtr4d 5110 |
. . 3
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
95 | 94 | 3coml 1125 |
. 2
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
96 | 2, 6, 47, 95 | ismeti 23459 |
1
⊢ 𝐷 ∈ (Met‘𝑋) |