Step | Hyp | Ref
| Expression |
1 | | imsmetlem.1 |
. . 3
β’ π = (BaseSetβπ) |
2 | 1 | fvexi 6895 |
. 2
β’ π β V |
3 | | imsmetlem.9 |
. . 3
β’ π β NrmCVec |
4 | | imsmetlem.8 |
. . . 4
β’ π· = (IndMetβπ) |
5 | 1, 4 | imsdf 30377 |
. . 3
β’ (π β NrmCVec β π·:(π Γ π)βΆβ) |
6 | 3, 5 | ax-mp 5 |
. 2
β’ π·:(π Γ π)βΆβ |
7 | | imsmetlem.2 |
. . . . . 6
β’ πΊ = ( +π£
βπ) |
8 | | imsmetlem.4 |
. . . . . 6
β’ π = (
Β·π OLD βπ) |
9 | | imsmetlem.6 |
. . . . . 6
β’ π =
(normCVβπ) |
10 | 1, 7, 8, 9, 4 | imsdval2 30375 |
. . . . 5
β’ ((π β NrmCVec β§ π₯ β π β§ π¦ β π) β (π₯π·π¦) = (πβ(π₯πΊ(-1ππ¦)))) |
11 | 3, 10 | mp3an1 1444 |
. . . 4
β’ ((π₯ β π β§ π¦ β π) β (π₯π·π¦) = (πβ(π₯πΊ(-1ππ¦)))) |
12 | 11 | eqeq1d 2726 |
. . 3
β’ ((π₯ β π β§ π¦ β π) β ((π₯π·π¦) = 0 β (πβ(π₯πΊ(-1ππ¦))) = 0)) |
13 | | neg1cn 12322 |
. . . . . 6
β’ -1 β
β |
14 | 1, 8 | nvscl 30314 |
. . . . . 6
β’ ((π β NrmCVec β§ -1 β
β β§ π¦ β
π) β (-1ππ¦) β π) |
15 | 3, 13, 14 | mp3an12 1447 |
. . . . 5
β’ (π¦ β π β (-1ππ¦) β π) |
16 | 1, 7 | nvgcl 30308 |
. . . . . 6
β’ ((π β NrmCVec β§ π₯ β π β§ (-1ππ¦) β π) β (π₯πΊ(-1ππ¦)) β π) |
17 | 3, 16 | mp3an1 1444 |
. . . . 5
β’ ((π₯ β π β§ (-1ππ¦) β π) β (π₯πΊ(-1ππ¦)) β π) |
18 | 15, 17 | sylan2 592 |
. . . 4
β’ ((π₯ β π β§ π¦ β π) β (π₯πΊ(-1ππ¦)) β π) |
19 | | imsmetlem.5 |
. . . . 5
β’ π = (0vecβπ) |
20 | 1, 19, 9 | nvz 30357 |
. . . 4
β’ ((π β NrmCVec β§ (π₯πΊ(-1ππ¦)) β π) β ((πβ(π₯πΊ(-1ππ¦))) = 0 β (π₯πΊ(-1ππ¦)) = π)) |
21 | 3, 18, 20 | sylancr 586 |
. . 3
β’ ((π₯ β π β§ π¦ β π) β ((πβ(π₯πΊ(-1ππ¦))) = 0 β (π₯πΊ(-1ππ¦)) = π)) |
22 | 1, 19 | nvzcl 30322 |
. . . . . . 7
β’ (π β NrmCVec β π β π) |
23 | 3, 22 | ax-mp 5 |
. . . . . 6
β’ π β π |
24 | 1, 7 | nvrcan 30312 |
. . . . . . 7
β’ ((π β NrmCVec β§ ((π₯πΊ(-1ππ¦)) β π β§ π β π β§ π¦ β π)) β (((π₯πΊ(-1ππ¦))πΊπ¦) = (ππΊπ¦) β (π₯πΊ(-1ππ¦)) = π)) |
25 | 3, 24 | mpan 687 |
. . . . . 6
β’ (((π₯πΊ(-1ππ¦)) β π β§ π β π β§ π¦ β π) β (((π₯πΊ(-1ππ¦))πΊπ¦) = (ππΊπ¦) β (π₯πΊ(-1ππ¦)) = π)) |
26 | 23, 25 | mp3an2 1445 |
. . . . 5
β’ (((π₯πΊ(-1ππ¦)) β π β§ π¦ β π) β (((π₯πΊ(-1ππ¦))πΊπ¦) = (ππΊπ¦) β (π₯πΊ(-1ππ¦)) = π)) |
27 | 18, 26 | sylancom 587 |
. . . 4
β’ ((π₯ β π β§ π¦ β π) β (((π₯πΊ(-1ππ¦))πΊπ¦) = (ππΊπ¦) β (π₯πΊ(-1ππ¦)) = π)) |
28 | | simpl 482 |
. . . . . . 7
β’ ((π₯ β π β§ π¦ β π) β π₯ β π) |
29 | 15 | adantl 481 |
. . . . . . 7
β’ ((π₯ β π β§ π¦ β π) β (-1ππ¦) β π) |
30 | | simpr 484 |
. . . . . . 7
β’ ((π₯ β π β§ π¦ β π) β π¦ β π) |
31 | 1, 7 | nvass 30310 |
. . . . . . . 8
β’ ((π β NrmCVec β§ (π₯ β π β§ (-1ππ¦) β π β§ π¦ β π)) β ((π₯πΊ(-1ππ¦))πΊπ¦) = (π₯πΊ((-1ππ¦)πΊπ¦))) |
32 | 3, 31 | mpan 687 |
. . . . . . 7
β’ ((π₯ β π β§ (-1ππ¦) β π β§ π¦ β π) β ((π₯πΊ(-1ππ¦))πΊπ¦) = (π₯πΊ((-1ππ¦)πΊπ¦))) |
33 | 28, 29, 30, 32 | syl3anc 1368 |
. . . . . 6
β’ ((π₯ β π β§ π¦ β π) β ((π₯πΊ(-1ππ¦))πΊπ¦) = (π₯πΊ((-1ππ¦)πΊπ¦))) |
34 | 1, 7, 8, 19 | nvlinv 30340 |
. . . . . . . . 9
β’ ((π β NrmCVec β§ π¦ β π) β ((-1ππ¦)πΊπ¦) = π) |
35 | 3, 34 | mpan 687 |
. . . . . . . 8
β’ (π¦ β π β ((-1ππ¦)πΊπ¦) = π) |
36 | 35 | adantl 481 |
. . . . . . 7
β’ ((π₯ β π β§ π¦ β π) β ((-1ππ¦)πΊπ¦) = π) |
37 | 36 | oveq2d 7417 |
. . . . . 6
β’ ((π₯ β π β§ π¦ β π) β (π₯πΊ((-1ππ¦)πΊπ¦)) = (π₯πΊπ)) |
38 | 1, 7, 19 | nv0rid 30323 |
. . . . . . . 8
β’ ((π β NrmCVec β§ π₯ β π) β (π₯πΊπ) = π₯) |
39 | 3, 38 | mpan 687 |
. . . . . . 7
β’ (π₯ β π β (π₯πΊπ) = π₯) |
40 | 39 | adantr 480 |
. . . . . 6
β’ ((π₯ β π β§ π¦ β π) β (π₯πΊπ) = π₯) |
41 | 33, 37, 40 | 3eqtrd 2768 |
. . . . 5
β’ ((π₯ β π β§ π¦ β π) β ((π₯πΊ(-1ππ¦))πΊπ¦) = π₯) |
42 | 1, 7, 19 | nv0lid 30324 |
. . . . . . 7
β’ ((π β NrmCVec β§ π¦ β π) β (ππΊπ¦) = π¦) |
43 | 3, 42 | mpan 687 |
. . . . . 6
β’ (π¦ β π β (ππΊπ¦) = π¦) |
44 | 43 | adantl 481 |
. . . . 5
β’ ((π₯ β π β§ π¦ β π) β (ππΊπ¦) = π¦) |
45 | 41, 44 | eqeq12d 2740 |
. . . 4
β’ ((π₯ β π β§ π¦ β π) β (((π₯πΊ(-1ππ¦))πΊπ¦) = (ππΊπ¦) β π₯ = π¦)) |
46 | 27, 45 | bitr3d 281 |
. . 3
β’ ((π₯ β π β§ π¦ β π) β ((π₯πΊ(-1ππ¦)) = π β π₯ = π¦)) |
47 | 12, 21, 46 | 3bitrd 305 |
. 2
β’ ((π₯ β π β§ π¦ β π) β ((π₯π·π¦) = 0 β π₯ = π¦)) |
48 | | simpr 484 |
. . . . . . 7
β’ ((π§ β π β§ π₯ β π) β π₯ β π) |
49 | 1, 8 | nvscl 30314 |
. . . . . . . . 9
β’ ((π β NrmCVec β§ -1 β
β β§ π§ β
π) β (-1ππ§) β π) |
50 | 3, 13, 49 | mp3an12 1447 |
. . . . . . . 8
β’ (π§ β π β (-1ππ§) β π) |
51 | 50 | adantr 480 |
. . . . . . 7
β’ ((π§ β π β§ π₯ β π) β (-1ππ§) β π) |
52 | 1, 7 | nvgcl 30308 |
. . . . . . . 8
β’ ((π β NrmCVec β§ π₯ β π β§ (-1ππ§) β π) β (π₯πΊ(-1ππ§)) β π) |
53 | 3, 52 | mp3an1 1444 |
. . . . . . 7
β’ ((π₯ β π β§ (-1ππ§) β π) β (π₯πΊ(-1ππ§)) β π) |
54 | 48, 51, 53 | syl2anc 583 |
. . . . . 6
β’ ((π§ β π β§ π₯ β π) β (π₯πΊ(-1ππ§)) β π) |
55 | 54 | 3adant3 1129 |
. . . . 5
β’ ((π§ β π β§ π₯ β π β§ π¦ β π) β (π₯πΊ(-1ππ§)) β π) |
56 | 1, 7 | nvgcl 30308 |
. . . . . . . 8
β’ ((π β NrmCVec β§ π§ β π β§ (-1ππ¦) β π) β (π§πΊ(-1ππ¦)) β π) |
57 | 3, 56 | mp3an1 1444 |
. . . . . . 7
β’ ((π§ β π β§ (-1ππ¦) β π) β (π§πΊ(-1ππ¦)) β π) |
58 | 15, 57 | sylan2 592 |
. . . . . 6
β’ ((π§ β π β§ π¦ β π) β (π§πΊ(-1ππ¦)) β π) |
59 | 58 | 3adant2 1128 |
. . . . 5
β’ ((π§ β π β§ π₯ β π β§ π¦ β π) β (π§πΊ(-1ππ¦)) β π) |
60 | 1, 7, 9 | nvtri 30358 |
. . . . . 6
β’ ((π β NrmCVec β§ (π₯πΊ(-1ππ§)) β π β§ (π§πΊ(-1ππ¦)) β π) β (πβ((π₯πΊ(-1ππ§))πΊ(π§πΊ(-1ππ¦)))) β€ ((πβ(π₯πΊ(-1ππ§))) + (πβ(π§πΊ(-1ππ¦))))) |
61 | 3, 60 | mp3an1 1444 |
. . . . 5
β’ (((π₯πΊ(-1ππ§)) β π β§ (π§πΊ(-1ππ¦)) β π) β (πβ((π₯πΊ(-1ππ§))πΊ(π§πΊ(-1ππ¦)))) β€ ((πβ(π₯πΊ(-1ππ§))) + (πβ(π§πΊ(-1ππ¦))))) |
62 | 55, 59, 61 | syl2anc 583 |
. . . 4
β’ ((π§ β π β§ π₯ β π β§ π¦ β π) β (πβ((π₯πΊ(-1ππ§))πΊ(π§πΊ(-1ππ¦)))) β€ ((πβ(π₯πΊ(-1ππ§))) + (πβ(π§πΊ(-1ππ¦))))) |
63 | 11 | 3adant1 1127 |
. . . . 5
β’ ((π§ β π β§ π₯ β π β§ π¦ β π) β (π₯π·π¦) = (πβ(π₯πΊ(-1ππ¦)))) |
64 | | simp1 1133 |
. . . . . . . 8
β’ ((π§ β π β§ π₯ β π β§ π¦ β π) β π§ β π) |
65 | 15 | 3ad2ant3 1132 |
. . . . . . . 8
β’ ((π§ β π β§ π₯ β π β§ π¦ β π) β (-1ππ¦) β π) |
66 | 1, 7 | nvass 30310 |
. . . . . . . . 9
β’ ((π β NrmCVec β§ ((π₯πΊ(-1ππ§)) β π β§ π§ β π β§ (-1ππ¦) β π)) β (((π₯πΊ(-1ππ§))πΊπ§)πΊ(-1ππ¦)) = ((π₯πΊ(-1ππ§))πΊ(π§πΊ(-1ππ¦)))) |
67 | 3, 66 | mpan 687 |
. . . . . . . 8
β’ (((π₯πΊ(-1ππ§)) β π β§ π§ β π β§ (-1ππ¦) β π) β (((π₯πΊ(-1ππ§))πΊπ§)πΊ(-1ππ¦)) = ((π₯πΊ(-1ππ§))πΊ(π§πΊ(-1ππ¦)))) |
68 | 55, 64, 65, 67 | syl3anc 1368 |
. . . . . . 7
β’ ((π§ β π β§ π₯ β π β§ π¦ β π) β (((π₯πΊ(-1ππ§))πΊπ§)πΊ(-1ππ¦)) = ((π₯πΊ(-1ππ§))πΊ(π§πΊ(-1ππ¦)))) |
69 | | simpl 482 |
. . . . . . . . . . 11
β’ ((π§ β π β§ π₯ β π) β π§ β π) |
70 | 1, 7 | nvass 30310 |
. . . . . . . . . . . 12
β’ ((π β NrmCVec β§ (π₯ β π β§ (-1ππ§) β π β§ π§ β π)) β ((π₯πΊ(-1ππ§))πΊπ§) = (π₯πΊ((-1ππ§)πΊπ§))) |
71 | 3, 70 | mpan 687 |
. . . . . . . . . . 11
β’ ((π₯ β π β§ (-1ππ§) β π β§ π§ β π) β ((π₯πΊ(-1ππ§))πΊπ§) = (π₯πΊ((-1ππ§)πΊπ§))) |
72 | 48, 51, 69, 71 | syl3anc 1368 |
. . . . . . . . . 10
β’ ((π§ β π β§ π₯ β π) β ((π₯πΊ(-1ππ§))πΊπ§) = (π₯πΊ((-1ππ§)πΊπ§))) |
73 | 1, 7, 8, 19 | nvlinv 30340 |
. . . . . . . . . . . . 13
β’ ((π β NrmCVec β§ π§ β π) β ((-1ππ§)πΊπ§) = π) |
74 | 3, 73 | mpan 687 |
. . . . . . . . . . . 12
β’ (π§ β π β ((-1ππ§)πΊπ§) = π) |
75 | 74 | adantr 480 |
. . . . . . . . . . 11
β’ ((π§ β π β§ π₯ β π) β ((-1ππ§)πΊπ§) = π) |
76 | 75 | oveq2d 7417 |
. . . . . . . . . 10
β’ ((π§ β π β§ π₯ β π) β (π₯πΊ((-1ππ§)πΊπ§)) = (π₯πΊπ)) |
77 | 39 | adantl 481 |
. . . . . . . . . 10
β’ ((π§ β π β§ π₯ β π) β (π₯πΊπ) = π₯) |
78 | 72, 76, 77 | 3eqtrd 2768 |
. . . . . . . . 9
β’ ((π§ β π β§ π₯ β π) β ((π₯πΊ(-1ππ§))πΊπ§) = π₯) |
79 | 78 | 3adant3 1129 |
. . . . . . . 8
β’ ((π§ β π β§ π₯ β π β§ π¦ β π) β ((π₯πΊ(-1ππ§))πΊπ§) = π₯) |
80 | 79 | oveq1d 7416 |
. . . . . . 7
β’ ((π§ β π β§ π₯ β π β§ π¦ β π) β (((π₯πΊ(-1ππ§))πΊπ§)πΊ(-1ππ¦)) = (π₯πΊ(-1ππ¦))) |
81 | 68, 80 | eqtr3d 2766 |
. . . . . 6
β’ ((π§ β π β§ π₯ β π β§ π¦ β π) β ((π₯πΊ(-1ππ§))πΊ(π§πΊ(-1ππ¦))) = (π₯πΊ(-1ππ¦))) |
82 | 81 | fveq2d 6885 |
. . . . 5
β’ ((π§ β π β§ π₯ β π β§ π¦ β π) β (πβ((π₯πΊ(-1ππ§))πΊ(π§πΊ(-1ππ¦)))) = (πβ(π₯πΊ(-1ππ¦)))) |
83 | 63, 82 | eqtr4d 2767 |
. . . 4
β’ ((π§ β π β§ π₯ β π β§ π¦ β π) β (π₯π·π¦) = (πβ((π₯πΊ(-1ππ§))πΊ(π§πΊ(-1ππ¦))))) |
84 | 1, 7, 8, 9, 4 | imsdval2 30375 |
. . . . . . . 8
β’ ((π β NrmCVec β§ π§ β π β§ π₯ β π) β (π§π·π₯) = (πβ(π§πΊ(-1ππ₯)))) |
85 | 3, 84 | mp3an1 1444 |
. . . . . . 7
β’ ((π§ β π β§ π₯ β π) β (π§π·π₯) = (πβ(π§πΊ(-1ππ₯)))) |
86 | 1, 7, 8, 9 | nvdif 30354 |
. . . . . . . 8
β’ ((π β NrmCVec β§ π§ β π β§ π₯ β π) β (πβ(π§πΊ(-1ππ₯))) = (πβ(π₯πΊ(-1ππ§)))) |
87 | 3, 86 | mp3an1 1444 |
. . . . . . 7
β’ ((π§ β π β§ π₯ β π) β (πβ(π§πΊ(-1ππ₯))) = (πβ(π₯πΊ(-1ππ§)))) |
88 | 85, 87 | eqtrd 2764 |
. . . . . 6
β’ ((π§ β π β§ π₯ β π) β (π§π·π₯) = (πβ(π₯πΊ(-1ππ§)))) |
89 | 88 | 3adant3 1129 |
. . . . 5
β’ ((π§ β π β§ π₯ β π β§ π¦ β π) β (π§π·π₯) = (πβ(π₯πΊ(-1ππ§)))) |
90 | 1, 7, 8, 9, 4 | imsdval2 30375 |
. . . . . . 7
β’ ((π β NrmCVec β§ π§ β π β§ π¦ β π) β (π§π·π¦) = (πβ(π§πΊ(-1ππ¦)))) |
91 | 3, 90 | mp3an1 1444 |
. . . . . 6
β’ ((π§ β π β§ π¦ β π) β (π§π·π¦) = (πβ(π§πΊ(-1ππ¦)))) |
92 | 91 | 3adant2 1128 |
. . . . 5
β’ ((π§ β π β§ π₯ β π β§ π¦ β π) β (π§π·π¦) = (πβ(π§πΊ(-1ππ¦)))) |
93 | 89, 92 | oveq12d 7419 |
. . . 4
β’ ((π§ β π β§ π₯ β π β§ π¦ β π) β ((π§π·π₯) + (π§π·π¦)) = ((πβ(π₯πΊ(-1ππ§))) + (πβ(π§πΊ(-1ππ¦))))) |
94 | 62, 83, 93 | 3brtr4d 5170 |
. . 3
β’ ((π§ β π β§ π₯ β π β§ π¦ β π) β (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦))) |
95 | 94 | 3coml 1124 |
. 2
β’ ((π₯ β π β§ π¦ β π β§ π§ β π) β (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦))) |
96 | 2, 6, 47, 95 | ismeti 24152 |
1
β’ π· β (Metβπ) |