MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsmetlem Structured version   Visualization version   GIF version

Theorem imsmetlem 28467
Description: Lemma for imsmet 28468. (Contributed by NM, 29-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsmetlem.1 𝑋 = (BaseSet‘𝑈)
imsmetlem.2 𝐺 = ( +𝑣𝑈)
imsmetlem.7 𝑀 = (inv‘𝐺)
imsmetlem.4 𝑆 = ( ·𝑠OLD𝑈)
imsmetlem.5 𝑍 = (0vec𝑈)
imsmetlem.6 𝑁 = (normCV𝑈)
imsmetlem.8 𝐷 = (IndMet‘𝑈)
imsmetlem.9 𝑈 ∈ NrmCVec
Assertion
Ref Expression
imsmetlem 𝐷 ∈ (Met‘𝑋)

Proof of Theorem imsmetlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imsmetlem.1 . . 3 𝑋 = (BaseSet‘𝑈)
21fvexi 6684 . 2 𝑋 ∈ V
3 imsmetlem.9 . . 3 𝑈 ∈ NrmCVec
4 imsmetlem.8 . . . 4 𝐷 = (IndMet‘𝑈)
51, 4imsdf 28466 . . 3 (𝑈 ∈ NrmCVec → 𝐷:(𝑋 × 𝑋)⟶ℝ)
63, 5ax-mp 5 . 2 𝐷:(𝑋 × 𝑋)⟶ℝ
7 imsmetlem.2 . . . . . 6 𝐺 = ( +𝑣𝑈)
8 imsmetlem.4 . . . . . 6 𝑆 = ( ·𝑠OLD𝑈)
9 imsmetlem.6 . . . . . 6 𝑁 = (normCV𝑈)
101, 7, 8, 9, 4imsdval2 28464 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑁‘(𝑥𝐺(-1𝑆𝑦))))
113, 10mp3an1 1444 . . . 4 ((𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑁‘(𝑥𝐺(-1𝑆𝑦))))
1211eqeq1d 2823 . . 3 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ (𝑁‘(𝑥𝐺(-1𝑆𝑦))) = 0))
13 neg1cn 11752 . . . . . 6 -1 ∈ ℂ
141, 8nvscl 28403 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝑦𝑋) → (-1𝑆𝑦) ∈ 𝑋)
153, 13, 14mp3an12 1447 . . . . 5 (𝑦𝑋 → (-1𝑆𝑦) ∈ 𝑋)
161, 7nvgcl 28397 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋)
173, 16mp3an1 1444 . . . . 5 ((𝑥𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋)
1815, 17sylan2 594 . . . 4 ((𝑥𝑋𝑦𝑋) → (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋)
19 imsmetlem.5 . . . . 5 𝑍 = (0vec𝑈)
201, 19, 9nvz 28446 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋) → ((𝑁‘(𝑥𝐺(-1𝑆𝑦))) = 0 ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
213, 18, 20sylancr 589 . . 3 ((𝑥𝑋𝑦𝑋) → ((𝑁‘(𝑥𝐺(-1𝑆𝑦))) = 0 ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
221, 19nvzcl 28411 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝑍𝑋)
233, 22ax-mp 5 . . . . . 6 𝑍𝑋
241, 7nvrcan 28401 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ((𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋𝑍𝑋𝑦𝑋)) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
253, 24mpan 688 . . . . . 6 (((𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋𝑍𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
2623, 25mp3an2 1445 . . . . 5 (((𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
2718, 26sylancom 590 . . . 4 ((𝑥𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
28 simpl 485 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → 𝑥𝑋)
2915adantl 484 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → (-1𝑆𝑦) ∈ 𝑋)
30 simpr 487 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → 𝑦𝑋)
311, 7nvass 28399 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋𝑦𝑋)) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑥𝐺((-1𝑆𝑦)𝐺𝑦)))
323, 31mpan 688 . . . . . . 7 ((𝑥𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑥𝐺((-1𝑆𝑦)𝐺𝑦)))
3328, 29, 30, 32syl3anc 1367 . . . . . 6 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑥𝐺((-1𝑆𝑦)𝐺𝑦)))
341, 7, 8, 19nvlinv 28429 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → ((-1𝑆𝑦)𝐺𝑦) = 𝑍)
353, 34mpan 688 . . . . . . . 8 (𝑦𝑋 → ((-1𝑆𝑦)𝐺𝑦) = 𝑍)
3635adantl 484 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → ((-1𝑆𝑦)𝐺𝑦) = 𝑍)
3736oveq2d 7172 . . . . . 6 ((𝑥𝑋𝑦𝑋) → (𝑥𝐺((-1𝑆𝑦)𝐺𝑦)) = (𝑥𝐺𝑍))
381, 7, 19nv0rid 28412 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → (𝑥𝐺𝑍) = 𝑥)
393, 38mpan 688 . . . . . . 7 (𝑥𝑋 → (𝑥𝐺𝑍) = 𝑥)
4039adantr 483 . . . . . 6 ((𝑥𝑋𝑦𝑋) → (𝑥𝐺𝑍) = 𝑥)
4133, 37, 403eqtrd 2860 . . . . 5 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = 𝑥)
421, 7, 19nv0lid 28413 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → (𝑍𝐺𝑦) = 𝑦)
433, 42mpan 688 . . . . . 6 (𝑦𝑋 → (𝑍𝐺𝑦) = 𝑦)
4443adantl 484 . . . . 5 ((𝑥𝑋𝑦𝑋) → (𝑍𝐺𝑦) = 𝑦)
4541, 44eqeq12d 2837 . . . 4 ((𝑥𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ 𝑥 = 𝑦))
4627, 45bitr3d 283 . . 3 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑦)) = 𝑍𝑥 = 𝑦))
4712, 21, 463bitrd 307 . 2 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
48 simpr 487 . . . . . . 7 ((𝑧𝑋𝑥𝑋) → 𝑥𝑋)
491, 8nvscl 28403 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝑧𝑋) → (-1𝑆𝑧) ∈ 𝑋)
503, 13, 49mp3an12 1447 . . . . . . . 8 (𝑧𝑋 → (-1𝑆𝑧) ∈ 𝑋)
5150adantr 483 . . . . . . 7 ((𝑧𝑋𝑥𝑋) → (-1𝑆𝑧) ∈ 𝑋)
521, 7nvgcl 28397 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋)
533, 52mp3an1 1444 . . . . . . 7 ((𝑥𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋)
5448, 51, 53syl2anc 586 . . . . . 6 ((𝑧𝑋𝑥𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋)
55543adant3 1128 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋)
561, 7nvgcl 28397 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋)
573, 56mp3an1 1444 . . . . . . 7 ((𝑧𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋)
5815, 57sylan2 594 . . . . . 6 ((𝑧𝑋𝑦𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋)
59583adant2 1127 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋)
601, 7, 9nvtri 28447 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋 ∧ (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) ≤ ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦)))))
613, 60mp3an1 1444 . . . . 5 (((𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋 ∧ (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) ≤ ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦)))))
6255, 59, 61syl2anc 586 . . . 4 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) ≤ ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦)))))
63113adant1 1126 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑁‘(𝑥𝐺(-1𝑆𝑦))))
64 simp1 1132 . . . . . . . 8 ((𝑧𝑋𝑥𝑋𝑦𝑋) → 𝑧𝑋)
65153ad2ant3 1131 . . . . . . . 8 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (-1𝑆𝑦) ∈ 𝑋)
661, 7nvass 28399 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ ((𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋𝑧𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋)) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦))))
673, 66mpan 688 . . . . . . . 8 (((𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋𝑧𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦))))
6855, 64, 65, 67syl3anc 1367 . . . . . . 7 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦))))
69 simpl 485 . . . . . . . . . . 11 ((𝑧𝑋𝑥𝑋) → 𝑧𝑋)
701, 7nvass 28399 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋𝑧𝑋)) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = (𝑥𝐺((-1𝑆𝑧)𝐺𝑧)))
713, 70mpan 688 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋𝑧𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = (𝑥𝐺((-1𝑆𝑧)𝐺𝑧)))
7248, 51, 69, 71syl3anc 1367 . . . . . . . . . 10 ((𝑧𝑋𝑥𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = (𝑥𝐺((-1𝑆𝑧)𝐺𝑧)))
731, 7, 8, 19nvlinv 28429 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → ((-1𝑆𝑧)𝐺𝑧) = 𝑍)
743, 73mpan 688 . . . . . . . . . . . 12 (𝑧𝑋 → ((-1𝑆𝑧)𝐺𝑧) = 𝑍)
7574adantr 483 . . . . . . . . . . 11 ((𝑧𝑋𝑥𝑋) → ((-1𝑆𝑧)𝐺𝑧) = 𝑍)
7675oveq2d 7172 . . . . . . . . . 10 ((𝑧𝑋𝑥𝑋) → (𝑥𝐺((-1𝑆𝑧)𝐺𝑧)) = (𝑥𝐺𝑍))
7739adantl 484 . . . . . . . . . 10 ((𝑧𝑋𝑥𝑋) → (𝑥𝐺𝑍) = 𝑥)
7872, 76, 773eqtrd 2860 . . . . . . . . 9 ((𝑧𝑋𝑥𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = 𝑥)
79783adant3 1128 . . . . . . . 8 ((𝑧𝑋𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = 𝑥)
8079oveq1d 7171 . . . . . . 7 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = (𝑥𝐺(-1𝑆𝑦)))
8168, 80eqtr3d 2858 . . . . . 6 ((𝑧𝑋𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦))) = (𝑥𝐺(-1𝑆𝑦)))
8281fveq2d 6674 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) = (𝑁‘(𝑥𝐺(-1𝑆𝑦))))
8363, 82eqtr4d 2859 . . . 4 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))))
841, 7, 8, 9, 4imsdval2 28464 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋𝑥𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑧𝐺(-1𝑆𝑥))))
853, 84mp3an1 1444 . . . . . . 7 ((𝑧𝑋𝑥𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑧𝐺(-1𝑆𝑥))))
861, 7, 8, 9nvdif 28443 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋𝑥𝑋) → (𝑁‘(𝑧𝐺(-1𝑆𝑥))) = (𝑁‘(𝑥𝐺(-1𝑆𝑧))))
873, 86mp3an1 1444 . . . . . . 7 ((𝑧𝑋𝑥𝑋) → (𝑁‘(𝑧𝐺(-1𝑆𝑥))) = (𝑁‘(𝑥𝐺(-1𝑆𝑧))))
8885, 87eqtrd 2856 . . . . . 6 ((𝑧𝑋𝑥𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑥𝐺(-1𝑆𝑧))))
89883adant3 1128 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑥𝐺(-1𝑆𝑧))))
901, 7, 8, 9, 4imsdval2 28464 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋𝑦𝑋) → (𝑧𝐷𝑦) = (𝑁‘(𝑧𝐺(-1𝑆𝑦))))
913, 90mp3an1 1444 . . . . . 6 ((𝑧𝑋𝑦𝑋) → (𝑧𝐷𝑦) = (𝑁‘(𝑧𝐺(-1𝑆𝑦))))
92913adant2 1127 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑧𝐷𝑦) = (𝑁‘(𝑧𝐺(-1𝑆𝑦))))
9389, 92oveq12d 7174 . . . 4 ((𝑧𝑋𝑥𝑋𝑦𝑋) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦)))))
9462, 83, 933brtr4d 5098 . . 3 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
95943coml 1123 . 2 ((𝑥𝑋𝑦𝑋𝑧𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
962, 6, 47, 95ismeti 22935 1 𝐷 ∈ (Met‘𝑋)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5066   × cxp 5553  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540  cle 10676  -cneg 10871  Metcmet 20531  invcgn 28268  NrmCVeccnv 28361   +𝑣 cpv 28362  BaseSetcba 28363   ·𝑠OLD cns 28364  0veccn0v 28365  normCVcnmcv 28367  IndMetcims 28368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-met 20539  df-grpo 28270  df-gid 28271  df-ginv 28272  df-gdiv 28273  df-ablo 28322  df-vc 28336  df-nv 28369  df-va 28372  df-ba 28373  df-sm 28374  df-0v 28375  df-vs 28376  df-nmcv 28377  df-ims 28378
This theorem is referenced by:  imsmet  28468
  Copyright terms: Public domain W3C validator