| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-endmnd | Structured version Visualization version GIF version | ||
| Description: The monoid of endomorphisms on an object of a category is a monoid. (Contributed by BJ, 5-Apr-2024.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-endval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| bj-endval.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| Ref | Expression |
|---|---|
| bj-endmnd | ⊢ (𝜑 → ((End ‘𝐶)‘𝑋) ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-endval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | bj-endval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
| 3 | 1, 2 | bj-endbase 37294 | . . 3 ⊢ (𝜑 → (Base‘((End ‘𝐶)‘𝑋)) = (𝑋(Hom ‘𝐶)𝑋)) |
| 4 | 3 | eqcomd 2735 | . 2 ⊢ (𝜑 → (𝑋(Hom ‘𝐶)𝑋) = (Base‘((End ‘𝐶)‘𝑋))) |
| 5 | 1, 2 | bj-endcomp 37295 | . . 3 ⊢ (𝜑 → (+g‘((End ‘𝐶)‘𝑋)) = (〈𝑋, 𝑋〉(comp‘𝐶)𝑋)) |
| 6 | 5 | eqcomd 2735 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑋〉(comp‘𝐶)𝑋) = (+g‘((End ‘𝐶)‘𝑋))) |
| 7 | eqid 2729 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 8 | eqid 2729 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 9 | eqid 2729 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 10 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝐶 ∈ Cat) |
| 11 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑋 ∈ (Base‘𝐶)) |
| 12 | simp3 1138 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
| 13 | simp2 1137 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
| 14 | 7, 8, 9, 10, 11, 11, 11, 12, 13 | catcocl 17591 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (𝑥(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)𝑦) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 15 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝐶 ∈ Cat) |
| 16 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑋 ∈ (Base‘𝐶)) |
| 17 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) | |
| 18 | simp3 1138 | . . . 4 ⊢ ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 20 | simp2 1137 | . . . 4 ⊢ ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
| 21 | 17, 20 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 22 | simp1 1136 | . . . 4 ⊢ ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
| 23 | 17, 22 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 24 | 7, 8, 9, 15, 16, 16, 16, 19, 21, 16, 23 | catass 17592 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → ((𝑥(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)𝑦)(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)𝑧) = (𝑥(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)(𝑦(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)𝑧))) |
| 25 | eqid 2729 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 26 | 7, 8, 25, 1, 2 | catidcl 17588 | . 2 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 27 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝐶 ∈ Cat) |
| 28 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑋 ∈ (Base‘𝐶)) |
| 29 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
| 30 | 7, 8, 25, 27, 28, 9, 28, 29 | catlid 17589 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)𝑥) = 𝑥) |
| 31 | 7, 8, 25, 27, 28, 9, 28, 29 | catrid 17590 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (𝑥(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)) = 𝑥) |
| 32 | 4, 6, 14, 24, 26, 30, 31 | ismndd 18630 | 1 ⊢ (𝜑 → ((End ‘𝐶)‘𝑋) ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 〈cop 4583 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 Hom chom 17172 compcco 17173 Catccat 17570 Idccid 17571 Mndcmnd 18608 End cend 37291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-cat 17574 df-cid 17575 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-bj-end 37292 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |