| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-endmnd | Structured version Visualization version GIF version | ||
| Description: The monoid of endomorphisms on an object of a category is a monoid. (Contributed by BJ, 5-Apr-2024.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-endval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| bj-endval.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| Ref | Expression |
|---|---|
| bj-endmnd | ⊢ (𝜑 → ((End ‘𝐶)‘𝑋) ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-endval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | bj-endval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
| 3 | 1, 2 | bj-endbase 37304 | . . 3 ⊢ (𝜑 → (Base‘((End ‘𝐶)‘𝑋)) = (𝑋(Hom ‘𝐶)𝑋)) |
| 4 | 3 | eqcomd 2735 | . 2 ⊢ (𝜑 → (𝑋(Hom ‘𝐶)𝑋) = (Base‘((End ‘𝐶)‘𝑋))) |
| 5 | 1, 2 | bj-endcomp 37305 | . . 3 ⊢ (𝜑 → (+g‘((End ‘𝐶)‘𝑋)) = (〈𝑋, 𝑋〉(comp‘𝐶)𝑋)) |
| 6 | 5 | eqcomd 2735 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑋〉(comp‘𝐶)𝑋) = (+g‘((End ‘𝐶)‘𝑋))) |
| 7 | eqid 2729 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 8 | eqid 2729 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 9 | eqid 2729 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 10 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝐶 ∈ Cat) |
| 11 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑋 ∈ (Base‘𝐶)) |
| 12 | simp3 1138 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
| 13 | simp2 1137 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
| 14 | 7, 8, 9, 10, 11, 11, 11, 12, 13 | catcocl 17646 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (𝑥(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)𝑦) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 15 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝐶 ∈ Cat) |
| 16 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑋 ∈ (Base‘𝐶)) |
| 17 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) | |
| 18 | simp3 1138 | . . . 4 ⊢ ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 20 | simp2 1137 | . . . 4 ⊢ ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
| 21 | 17, 20 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 22 | simp1 1136 | . . . 4 ⊢ ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
| 23 | 17, 22 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 24 | 7, 8, 9, 15, 16, 16, 16, 19, 21, 16, 23 | catass 17647 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → ((𝑥(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)𝑦)(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)𝑧) = (𝑥(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)(𝑦(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)𝑧))) |
| 25 | eqid 2729 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 26 | 7, 8, 25, 1, 2 | catidcl 17643 | . 2 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 27 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝐶 ∈ Cat) |
| 28 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑋 ∈ (Base‘𝐶)) |
| 29 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
| 30 | 7, 8, 25, 27, 28, 9, 28, 29 | catlid 17644 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)𝑥) = 𝑥) |
| 31 | 7, 8, 25, 27, 28, 9, 28, 29 | catrid 17645 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (𝑥(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)) = 𝑥) |
| 32 | 4, 6, 14, 24, 26, 30, 31 | ismndd 18683 | 1 ⊢ (𝜑 → ((End ‘𝐶)‘𝑋) ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 〈cop 4595 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Hom chom 17231 compcco 17232 Catccat 17625 Idccid 17626 Mndcmnd 18661 End cend 37301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-cat 17629 df-cid 17630 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-bj-end 37302 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |