Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-endmnd Structured version   Visualization version   GIF version

Theorem bj-endmnd 37301
Description: The monoid of endomorphisms on an object of a category is a monoid. (Contributed by BJ, 5-Apr-2024.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-endval.c (𝜑𝐶 ∈ Cat)
bj-endval.x (𝜑𝑋 ∈ (Base‘𝐶))
Assertion
Ref Expression
bj-endmnd (𝜑 → ((End ‘𝐶)‘𝑋) ∈ Mnd)

Proof of Theorem bj-endmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-endval.c . . . 4 (𝜑𝐶 ∈ Cat)
2 bj-endval.x . . . 4 (𝜑𝑋 ∈ (Base‘𝐶))
31, 2bj-endbase 37299 . . 3 (𝜑 → (Base‘((End ‘𝐶)‘𝑋)) = (𝑋(Hom ‘𝐶)𝑋))
43eqcomd 2741 . 2 (𝜑 → (𝑋(Hom ‘𝐶)𝑋) = (Base‘((End ‘𝐶)‘𝑋)))
51, 2bj-endcomp 37300 . . 3 (𝜑 → (+g‘((End ‘𝐶)‘𝑋)) = (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋))
65eqcomd 2741 . 2 (𝜑 → (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋) = (+g‘((End ‘𝐶)‘𝑋)))
7 eqid 2735 . . 3 (Base‘𝐶) = (Base‘𝐶)
8 eqid 2735 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
9 eqid 2735 . . 3 (comp‘𝐶) = (comp‘𝐶)
1013ad2ant1 1132 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝐶 ∈ Cat)
1123ad2ant1 1132 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑋 ∈ (Base‘𝐶))
12 simp3 1137 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋))
13 simp2 1136 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋))
147, 8, 9, 10, 11, 11, 11, 12, 13catcocl 17730 . 2 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (𝑥(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑦) ∈ (𝑋(Hom ‘𝐶)𝑋))
151adantr 480 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝐶 ∈ Cat)
162adantr 480 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑋 ∈ (Base‘𝐶))
17 simpr 484 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)))
18 simp3 1137 . . . 4 ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))
1917, 18syl 17 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))
20 simp2 1136 . . . 4 ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋))
2117, 20syl 17 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋))
22 simp1 1135 . . . 4 ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋))
2317, 22syl 17 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋))
247, 8, 9, 15, 16, 16, 16, 19, 21, 16, 23catass 17731 . 2 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → ((𝑥(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑦)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑧) = (𝑥(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)(𝑦(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑧)))
25 eqid 2735 . . 3 (Id‘𝐶) = (Id‘𝐶)
267, 8, 25, 1, 2catidcl 17727 . 2 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
271adantr 480 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝐶 ∈ Cat)
282adantr 480 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑋 ∈ (Base‘𝐶))
29 simpr 484 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋))
307, 8, 25, 27, 28, 9, 28, 29catlid 17728 . 2 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑥) = 𝑥)
317, 8, 25, 27, 28, 9, 28, 29catrid 17729 . 2 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (𝑥(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)) = 𝑥)
324, 6, 14, 24, 26, 30, 31ismndd 18782 1 (𝜑 → ((End ‘𝐶)‘𝑋) ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2106  cop 4637  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  Hom chom 17309  compcco 17310  Catccat 17709  Idccid 17710  Mndcmnd 18760  End cend 37296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-cat 17713  df-cid 17714  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-bj-end 37297
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator