Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-endmnd Structured version   Visualization version   GIF version

Theorem bj-endmnd 35172
Description: The monoid of endomorphisms on an object of a category is a monoid. (Contributed by BJ, 5-Apr-2024.)
Hypotheses
Ref Expression
bj-endval.c (𝜑𝐶 ∈ Cat)
bj-endval.x (𝜑𝑋 ∈ (Base‘𝐶))
Assertion
Ref Expression
bj-endmnd (𝜑 → ((End ‘𝐶)‘𝑋) ∈ Mnd)

Proof of Theorem bj-endmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-endval.c . . . 4 (𝜑𝐶 ∈ Cat)
2 bj-endval.x . . . 4 (𝜑𝑋 ∈ (Base‘𝐶))
31, 2bj-endbase 35170 . . 3 (𝜑 → (Base‘((End ‘𝐶)‘𝑋)) = (𝑋(Hom ‘𝐶)𝑋))
43eqcomd 2742 . 2 (𝜑 → (𝑋(Hom ‘𝐶)𝑋) = (Base‘((End ‘𝐶)‘𝑋)))
51, 2bj-endcomp 35171 . . 3 (𝜑 → (+g‘((End ‘𝐶)‘𝑋)) = (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋))
65eqcomd 2742 . 2 (𝜑 → (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋) = (+g‘((End ‘𝐶)‘𝑋)))
7 eqid 2736 . . 3 (Base‘𝐶) = (Base‘𝐶)
8 eqid 2736 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
9 eqid 2736 . . 3 (comp‘𝐶) = (comp‘𝐶)
1013ad2ant1 1135 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝐶 ∈ Cat)
1123ad2ant1 1135 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑋 ∈ (Base‘𝐶))
12 simp3 1140 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋))
13 simp2 1139 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋))
147, 8, 9, 10, 11, 11, 11, 12, 13catcocl 17142 . 2 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (𝑥(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑦) ∈ (𝑋(Hom ‘𝐶)𝑋))
151adantr 484 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝐶 ∈ Cat)
162adantr 484 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑋 ∈ (Base‘𝐶))
17 simpr 488 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)))
18 simp3 1140 . . . 4 ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))
1917, 18syl 17 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))
20 simp2 1139 . . . 4 ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋))
2117, 20syl 17 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋))
22 simp1 1138 . . . 4 ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋))
2317, 22syl 17 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋))
247, 8, 9, 15, 16, 16, 16, 19, 21, 16, 23catass 17143 . 2 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → ((𝑥(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑦)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑧) = (𝑥(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)(𝑦(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑧)))
25 eqid 2736 . . 3 (Id‘𝐶) = (Id‘𝐶)
267, 8, 25, 1, 2catidcl 17139 . 2 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
271adantr 484 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝐶 ∈ Cat)
282adantr 484 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑋 ∈ (Base‘𝐶))
29 simpr 488 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋))
307, 8, 25, 27, 28, 9, 28, 29catlid 17140 . 2 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑥) = 𝑥)
317, 8, 25, 27, 28, 9, 28, 29catrid 17141 . 2 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (𝑥(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)) = 𝑥)
324, 6, 14, 24, 26, 30, 31ismndd 18149 1 (𝜑 → ((End ‘𝐶)‘𝑋) ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089  wcel 2112  cop 4533  cfv 6358  (class class class)co 7191  Basecbs 16666  +gcplusg 16749  Hom chom 16760  compcco 16761  Catccat 17121  Idccid 17122  Mndcmnd 18127  End cend 35167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-ndx 16669  df-slot 16670  df-base 16672  df-plusg 16762  df-cat 17125  df-cid 17126  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-bj-end 35168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator