| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-endmnd | Structured version Visualization version GIF version | ||
| Description: The monoid of endomorphisms on an object of a category is a monoid. (Contributed by BJ, 5-Apr-2024.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-endval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| bj-endval.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| Ref | Expression |
|---|---|
| bj-endmnd | ⊢ (𝜑 → ((End ‘𝐶)‘𝑋) ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-endval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | bj-endval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
| 3 | 1, 2 | bj-endbase 37339 | . . 3 ⊢ (𝜑 → (Base‘((End ‘𝐶)‘𝑋)) = (𝑋(Hom ‘𝐶)𝑋)) |
| 4 | 3 | eqcomd 2742 | . 2 ⊢ (𝜑 → (𝑋(Hom ‘𝐶)𝑋) = (Base‘((End ‘𝐶)‘𝑋))) |
| 5 | 1, 2 | bj-endcomp 37340 | . . 3 ⊢ (𝜑 → (+g‘((End ‘𝐶)‘𝑋)) = (〈𝑋, 𝑋〉(comp‘𝐶)𝑋)) |
| 6 | 5 | eqcomd 2742 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑋〉(comp‘𝐶)𝑋) = (+g‘((End ‘𝐶)‘𝑋))) |
| 7 | eqid 2736 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 8 | eqid 2736 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 9 | eqid 2736 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 10 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝐶 ∈ Cat) |
| 11 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑋 ∈ (Base‘𝐶)) |
| 12 | simp3 1138 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
| 13 | simp2 1137 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
| 14 | 7, 8, 9, 10, 11, 11, 11, 12, 13 | catcocl 17702 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (𝑥(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)𝑦) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 15 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝐶 ∈ Cat) |
| 16 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑋 ∈ (Base‘𝐶)) |
| 17 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) | |
| 18 | simp3 1138 | . . . 4 ⊢ ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 20 | simp2 1137 | . . . 4 ⊢ ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
| 21 | 17, 20 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 22 | simp1 1136 | . . . 4 ⊢ ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
| 23 | 17, 22 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 24 | 7, 8, 9, 15, 16, 16, 16, 19, 21, 16, 23 | catass 17703 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → ((𝑥(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)𝑦)(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)𝑧) = (𝑥(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)(𝑦(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)𝑧))) |
| 25 | eqid 2736 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 26 | 7, 8, 25, 1, 2 | catidcl 17699 | . 2 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 27 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝐶 ∈ Cat) |
| 28 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑋 ∈ (Base‘𝐶)) |
| 29 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
| 30 | 7, 8, 25, 27, 28, 9, 28, 29 | catlid 17700 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)𝑥) = 𝑥) |
| 31 | 7, 8, 25, 27, 28, 9, 28, 29 | catrid 17701 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (𝑥(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)) = 𝑥) |
| 32 | 4, 6, 14, 24, 26, 30, 31 | ismndd 18739 | 1 ⊢ (𝜑 → ((End ‘𝐶)‘𝑋) ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 〈cop 4612 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 Hom chom 17287 compcco 17288 Catccat 17681 Idccid 17682 Mndcmnd 18717 End cend 37336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-cat 17685 df-cid 17686 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-bj-end 37337 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |