Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-endmnd Structured version   Visualization version   GIF version

Theorem bj-endmnd 37313
Description: The monoid of endomorphisms on an object of a category is a monoid. (Contributed by BJ, 5-Apr-2024.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-endval.c (𝜑𝐶 ∈ Cat)
bj-endval.x (𝜑𝑋 ∈ (Base‘𝐶))
Assertion
Ref Expression
bj-endmnd (𝜑 → ((End ‘𝐶)‘𝑋) ∈ Mnd)

Proof of Theorem bj-endmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-endval.c . . . 4 (𝜑𝐶 ∈ Cat)
2 bj-endval.x . . . 4 (𝜑𝑋 ∈ (Base‘𝐶))
31, 2bj-endbase 37311 . . 3 (𝜑 → (Base‘((End ‘𝐶)‘𝑋)) = (𝑋(Hom ‘𝐶)𝑋))
43eqcomd 2736 . 2 (𝜑 → (𝑋(Hom ‘𝐶)𝑋) = (Base‘((End ‘𝐶)‘𝑋)))
51, 2bj-endcomp 37312 . . 3 (𝜑 → (+g‘((End ‘𝐶)‘𝑋)) = (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋))
65eqcomd 2736 . 2 (𝜑 → (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋) = (+g‘((End ‘𝐶)‘𝑋)))
7 eqid 2730 . . 3 (Base‘𝐶) = (Base‘𝐶)
8 eqid 2730 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
9 eqid 2730 . . 3 (comp‘𝐶) = (comp‘𝐶)
1013ad2ant1 1133 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝐶 ∈ Cat)
1123ad2ant1 1133 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑋 ∈ (Base‘𝐶))
12 simp3 1138 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋))
13 simp2 1137 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋))
147, 8, 9, 10, 11, 11, 11, 12, 13catcocl 17653 . 2 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (𝑥(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑦) ∈ (𝑋(Hom ‘𝐶)𝑋))
151adantr 480 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝐶 ∈ Cat)
162adantr 480 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑋 ∈ (Base‘𝐶))
17 simpr 484 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)))
18 simp3 1138 . . . 4 ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))
1917, 18syl 17 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))
20 simp2 1137 . . . 4 ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋))
2117, 20syl 17 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋))
22 simp1 1136 . . . 4 ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋))
2317, 22syl 17 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋))
247, 8, 9, 15, 16, 16, 16, 19, 21, 16, 23catass 17654 . 2 ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → ((𝑥(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑦)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑧) = (𝑥(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)(𝑦(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑧)))
25 eqid 2730 . . 3 (Id‘𝐶) = (Id‘𝐶)
267, 8, 25, 1, 2catidcl 17650 . 2 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
271adantr 480 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝐶 ∈ Cat)
282adantr 480 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑋 ∈ (Base‘𝐶))
29 simpr 484 . . 3 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋))
307, 8, 25, 27, 28, 9, 28, 29catlid 17651 . 2 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑥) = 𝑥)
317, 8, 25, 27, 28, 9, 28, 29catrid 17652 . 2 ((𝜑𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (𝑥(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)) = 𝑥)
324, 6, 14, 24, 26, 30, 31ismndd 18690 1 (𝜑 → ((End ‘𝐶)‘𝑋) ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  cop 4598  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Hom chom 17238  compcco 17239  Catccat 17632  Idccid 17633  Mndcmnd 18668  End cend 37308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-cat 17636  df-cid 17637  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-bj-end 37309
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator