![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-endmnd | Structured version Visualization version GIF version |
Description: The monoid of endomorphisms on an object of a category is a monoid. (Contributed by BJ, 5-Apr-2024.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-endval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
bj-endval.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
Ref | Expression |
---|---|
bj-endmnd | ⊢ (𝜑 → ((End ‘𝐶)‘𝑋) ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-endval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
2 | bj-endval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
3 | 1, 2 | bj-endbase 36501 | . . 3 ⊢ (𝜑 → (Base‘((End ‘𝐶)‘𝑋)) = (𝑋(Hom ‘𝐶)𝑋)) |
4 | 3 | eqcomd 2737 | . 2 ⊢ (𝜑 → (𝑋(Hom ‘𝐶)𝑋) = (Base‘((End ‘𝐶)‘𝑋))) |
5 | 1, 2 | bj-endcomp 36502 | . . 3 ⊢ (𝜑 → (+g‘((End ‘𝐶)‘𝑋)) = (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)) |
6 | 5 | eqcomd 2737 | . 2 ⊢ (𝜑 → (⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋) = (+g‘((End ‘𝐶)‘𝑋))) |
7 | eqid 2731 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
8 | eqid 2731 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
9 | eqid 2731 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
10 | 1 | 3ad2ant1 1132 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝐶 ∈ Cat) |
11 | 2 | 3ad2ant1 1132 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑋 ∈ (Base‘𝐶)) |
12 | simp3 1137 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
13 | simp2 1136 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
14 | 7, 8, 9, 10, 11, 11, 11, 12, 13 | catcocl 17634 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (𝑥(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑦) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
15 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝐶 ∈ Cat) |
16 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑋 ∈ (Base‘𝐶)) |
17 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) | |
18 | simp3 1137 | . . . 4 ⊢ ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) |
20 | simp2 1136 | . . . 4 ⊢ ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
21 | 17, 20 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋)) |
22 | simp1 1135 | . . . 4 ⊢ ((𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
23 | 17, 22 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) |
24 | 7, 8, 9, 15, 16, 16, 16, 19, 21, 16, 23 | catass 17635 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑦 ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ 𝑧 ∈ (𝑋(Hom ‘𝐶)𝑋))) → ((𝑥(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑦)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑧) = (𝑥(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)(𝑦(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑧))) |
25 | eqid 2731 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
26 | 7, 8, 25, 1, 2 | catidcl 17631 | . 2 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
27 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝐶 ∈ Cat) |
28 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑋 ∈ (Base‘𝐶)) |
29 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) | |
30 | 7, 8, 25, 27, 28, 9, 28, 29 | catlid 17632 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)𝑥) = 𝑥) |
31 | 7, 8, 25, 27, 28, 9, 28, 29 | catrid 17633 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(Hom ‘𝐶)𝑋)) → (𝑥(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)) = 𝑥) |
32 | 4, 6, 14, 24, 26, 30, 31 | ismndd 18682 | 1 ⊢ (𝜑 → ((End ‘𝐶)‘𝑋) ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 ⟨cop 4634 ‘cfv 6543 (class class class)co 7412 Basecbs 17149 +gcplusg 17202 Hom chom 17213 compcco 17214 Catccat 17613 Idccid 17614 Mndcmnd 18660 End cend 36498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-cat 17617 df-cid 17618 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-bj-end 36499 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |