Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdmnd Structured version   Visualization version   GIF version

Theorem frmdmnd 17783
 Description: A free monoid is a monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypothesis
Ref Expression
frmdmnd.m 𝑀 = (freeMnd‘𝐼)
Assertion
Ref Expression
frmdmnd (𝐼𝑉𝑀 ∈ Mnd)

Proof of Theorem frmdmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2779 . 2 (𝐼𝑉 → (Base‘𝑀) = (Base‘𝑀))
2 eqidd 2779 . 2 (𝐼𝑉 → (+g𝑀) = (+g𝑀))
3 frmdmnd.m . . . . . 6 𝑀 = (freeMnd‘𝐼)
4 eqid 2778 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
5 eqid 2778 . . . . . 6 (+g𝑀) = (+g𝑀)
63, 4, 5frmdadd 17779 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) = (𝑥 ++ 𝑦))
73, 4frmdelbas 17777 . . . . . 6 (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ Word 𝐼)
83, 4frmdelbas 17777 . . . . . 6 (𝑦 ∈ (Base‘𝑀) → 𝑦 ∈ Word 𝐼)
9 ccatcl 13664 . . . . . 6 ((𝑥 ∈ Word 𝐼𝑦 ∈ Word 𝐼) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
107, 8, 9syl2an 589 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
116, 10eqeltrd 2859 . . . 4 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ Word 𝐼)
12113adant1 1121 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ Word 𝐼)
133, 4frmdbas 17776 . . . 4 (𝐼𝑉 → (Base‘𝑀) = Word 𝐼)
14133ad2ant1 1124 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (Base‘𝑀) = Word 𝐼)
1512, 14eleqtrrd 2862 . 2 ((𝐼𝑉𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
16 simpr1 1205 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘𝑀))
1716, 7syl 17 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑥 ∈ Word 𝐼)
18 simpr2 1207 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀))
1918, 8syl 17 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑦 ∈ Word 𝐼)
20 simpr3 1209 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑧 ∈ (Base‘𝑀))
213, 4frmdelbas 17777 . . . . . 6 (𝑧 ∈ (Base‘𝑀) → 𝑧 ∈ Word 𝐼)
2220, 21syl 17 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑧 ∈ Word 𝐼)
23 ccatass 13678 . . . . 5 ((𝑥 ∈ Word 𝐼𝑦 ∈ Word 𝐼𝑧 ∈ Word 𝐼) → ((𝑥 ++ 𝑦) ++ 𝑧) = (𝑥 ++ (𝑦 ++ 𝑧)))
2417, 19, 22, 23syl3anc 1439 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥 ++ 𝑦) ++ 𝑧) = (𝑥 ++ (𝑦 ++ 𝑧)))
2516, 18, 10syl2anc 579 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
2613adantr 474 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (Base‘𝑀) = Word 𝐼)
2725, 26eleqtrrd 2862 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥 ++ 𝑦) ∈ (Base‘𝑀))
283, 4, 5frmdadd 17779 . . . . 5 (((𝑥 ++ 𝑦) ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀)) → ((𝑥 ++ 𝑦)(+g𝑀)𝑧) = ((𝑥 ++ 𝑦) ++ 𝑧))
2927, 20, 28syl2anc 579 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥 ++ 𝑦)(+g𝑀)𝑧) = ((𝑥 ++ 𝑦) ++ 𝑧))
30 ccatcl 13664 . . . . . . 7 ((𝑦 ∈ Word 𝐼𝑧 ∈ Word 𝐼) → (𝑦 ++ 𝑧) ∈ Word 𝐼)
3119, 22, 30syl2anc 579 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦 ++ 𝑧) ∈ Word 𝐼)
3231, 26eleqtrrd 2862 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦 ++ 𝑧) ∈ (Base‘𝑀))
333, 4, 5frmdadd 17779 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ (𝑦 ++ 𝑧) ∈ (Base‘𝑀)) → (𝑥(+g𝑀)(𝑦 ++ 𝑧)) = (𝑥 ++ (𝑦 ++ 𝑧)))
3416, 32, 33syl2anc 579 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)(𝑦 ++ 𝑧)) = (𝑥 ++ (𝑦 ++ 𝑧)))
3524, 29, 343eqtr4d 2824 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥 ++ 𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦 ++ 𝑧)))
3616, 18, 6syl2anc 579 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)𝑦) = (𝑥 ++ 𝑦))
3736oveq1d 6937 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = ((𝑥 ++ 𝑦)(+g𝑀)𝑧))
383, 4, 5frmdadd 17779 . . . . 5 ((𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀)) → (𝑦(+g𝑀)𝑧) = (𝑦 ++ 𝑧))
3918, 20, 38syl2anc 579 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦(+g𝑀)𝑧) = (𝑦 ++ 𝑧))
4039oveq2d 6938 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)) = (𝑥(+g𝑀)(𝑦 ++ 𝑧)))
4135, 37, 403eqtr4d 2824 . 2 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
42 wrd0 13627 . . 3 ∅ ∈ Word 𝐼
4342, 13syl5eleqr 2866 . 2 (𝐼𝑉 → ∅ ∈ (Base‘𝑀))
443, 4, 5frmdadd 17779 . . . 4 ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = (∅ ++ 𝑥))
4543, 44sylan 575 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = (∅ ++ 𝑥))
467adantl 475 . . . 4 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → 𝑥 ∈ Word 𝐼)
47 ccatlid 13676 . . . 4 (𝑥 ∈ Word 𝐼 → (∅ ++ 𝑥) = 𝑥)
4846, 47syl 17 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (∅ ++ 𝑥) = 𝑥)
4945, 48eqtrd 2814 . 2 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = 𝑥)
503, 4, 5frmdadd 17779 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ ∅ ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
5150ancoms 452 . . . 4 ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
5243, 51sylan 575 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
53 ccatrid 13677 . . . 4 (𝑥 ∈ Word 𝐼 → (𝑥 ++ ∅) = 𝑥)
5446, 53syl 17 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (𝑥 ++ ∅) = 𝑥)
5552, 54eqtrd 2814 . 2 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = 𝑥)
561, 2, 15, 41, 43, 49, 55ismndd 17699 1 (𝐼𝑉𝑀 ∈ Mnd)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1071   = wceq 1601   ∈ wcel 2107  ∅c0 4141  ‘cfv 6135  (class class class)co 6922  Word cword 13599   ++ cconcat 13660  Basecbs 16255  +gcplusg 16338  Mndcmnd 17680  freeMndcfrmd 17771 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785  df-hash 13436  df-word 13600  df-concat 13661  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-plusg 16351  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-frmd 17773 This theorem is referenced by:  frmdsssubm  17785  frmdgsum  17786  frmdup1  17788  frgp0  18559  frgpadd  18562  frgpmhm  18564  mrsubff  32008  mrsubccat  32014  elmrsubrn  32016
 Copyright terms: Public domain W3C validator