MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdmnd Structured version   Visualization version   GIF version

Theorem frmdmnd 18872
Description: A free monoid is a monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypothesis
Ref Expression
frmdmnd.m 𝑀 = (freeMnd‘𝐼)
Assertion
Ref Expression
frmdmnd (𝐼𝑉𝑀 ∈ Mnd)

Proof of Theorem frmdmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2738 . 2 (𝐼𝑉 → (Base‘𝑀) = (Base‘𝑀))
2 eqidd 2738 . 2 (𝐼𝑉 → (+g𝑀) = (+g𝑀))
3 frmdmnd.m . . . . . 6 𝑀 = (freeMnd‘𝐼)
4 eqid 2737 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
5 eqid 2737 . . . . . 6 (+g𝑀) = (+g𝑀)
63, 4, 5frmdadd 18868 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) = (𝑥 ++ 𝑦))
73, 4frmdelbas 18866 . . . . . 6 (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ Word 𝐼)
83, 4frmdelbas 18866 . . . . . 6 (𝑦 ∈ (Base‘𝑀) → 𝑦 ∈ Word 𝐼)
9 ccatcl 14612 . . . . . 6 ((𝑥 ∈ Word 𝐼𝑦 ∈ Word 𝐼) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
107, 8, 9syl2an 596 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
116, 10eqeltrd 2841 . . . 4 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ Word 𝐼)
12113adant1 1131 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ Word 𝐼)
133, 4frmdbas 18865 . . . 4 (𝐼𝑉 → (Base‘𝑀) = Word 𝐼)
14133ad2ant1 1134 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (Base‘𝑀) = Word 𝐼)
1512, 14eleqtrrd 2844 . 2 ((𝐼𝑉𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
16 simpr1 1195 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘𝑀))
1716, 7syl 17 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑥 ∈ Word 𝐼)
18 simpr2 1196 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀))
1918, 8syl 17 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑦 ∈ Word 𝐼)
20 simpr3 1197 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑧 ∈ (Base‘𝑀))
213, 4frmdelbas 18866 . . . . . 6 (𝑧 ∈ (Base‘𝑀) → 𝑧 ∈ Word 𝐼)
2220, 21syl 17 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑧 ∈ Word 𝐼)
23 ccatass 14626 . . . . 5 ((𝑥 ∈ Word 𝐼𝑦 ∈ Word 𝐼𝑧 ∈ Word 𝐼) → ((𝑥 ++ 𝑦) ++ 𝑧) = (𝑥 ++ (𝑦 ++ 𝑧)))
2417, 19, 22, 23syl3anc 1373 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥 ++ 𝑦) ++ 𝑧) = (𝑥 ++ (𝑦 ++ 𝑧)))
2516, 18, 10syl2anc 584 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
2613adantr 480 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (Base‘𝑀) = Word 𝐼)
2725, 26eleqtrrd 2844 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥 ++ 𝑦) ∈ (Base‘𝑀))
283, 4, 5frmdadd 18868 . . . . 5 (((𝑥 ++ 𝑦) ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀)) → ((𝑥 ++ 𝑦)(+g𝑀)𝑧) = ((𝑥 ++ 𝑦) ++ 𝑧))
2927, 20, 28syl2anc 584 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥 ++ 𝑦)(+g𝑀)𝑧) = ((𝑥 ++ 𝑦) ++ 𝑧))
30 ccatcl 14612 . . . . . . 7 ((𝑦 ∈ Word 𝐼𝑧 ∈ Word 𝐼) → (𝑦 ++ 𝑧) ∈ Word 𝐼)
3119, 22, 30syl2anc 584 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦 ++ 𝑧) ∈ Word 𝐼)
3231, 26eleqtrrd 2844 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦 ++ 𝑧) ∈ (Base‘𝑀))
333, 4, 5frmdadd 18868 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ (𝑦 ++ 𝑧) ∈ (Base‘𝑀)) → (𝑥(+g𝑀)(𝑦 ++ 𝑧)) = (𝑥 ++ (𝑦 ++ 𝑧)))
3416, 32, 33syl2anc 584 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)(𝑦 ++ 𝑧)) = (𝑥 ++ (𝑦 ++ 𝑧)))
3524, 29, 343eqtr4d 2787 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥 ++ 𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦 ++ 𝑧)))
3616, 18, 6syl2anc 584 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)𝑦) = (𝑥 ++ 𝑦))
3736oveq1d 7446 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = ((𝑥 ++ 𝑦)(+g𝑀)𝑧))
383, 4, 5frmdadd 18868 . . . . 5 ((𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀)) → (𝑦(+g𝑀)𝑧) = (𝑦 ++ 𝑧))
3918, 20, 38syl2anc 584 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦(+g𝑀)𝑧) = (𝑦 ++ 𝑧))
4039oveq2d 7447 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)) = (𝑥(+g𝑀)(𝑦 ++ 𝑧)))
4135, 37, 403eqtr4d 2787 . 2 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
42 wrd0 14577 . . 3 ∅ ∈ Word 𝐼
4342, 13eleqtrrid 2848 . 2 (𝐼𝑉 → ∅ ∈ (Base‘𝑀))
443, 4, 5frmdadd 18868 . . . 4 ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = (∅ ++ 𝑥))
4543, 44sylan 580 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = (∅ ++ 𝑥))
467adantl 481 . . . 4 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → 𝑥 ∈ Word 𝐼)
47 ccatlid 14624 . . . 4 (𝑥 ∈ Word 𝐼 → (∅ ++ 𝑥) = 𝑥)
4846, 47syl 17 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (∅ ++ 𝑥) = 𝑥)
4945, 48eqtrd 2777 . 2 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = 𝑥)
503, 4, 5frmdadd 18868 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ ∅ ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
5150ancoms 458 . . . 4 ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
5243, 51sylan 580 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
53 ccatrid 14625 . . . 4 (𝑥 ∈ Word 𝐼 → (𝑥 ++ ∅) = 𝑥)
5446, 53syl 17 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (𝑥 ++ ∅) = 𝑥)
5552, 54eqtrd 2777 . 2 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = 𝑥)
561, 2, 15, 41, 43, 49, 55ismndd 18769 1 (𝐼𝑉𝑀 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  c0 4333  cfv 6561  (class class class)co 7431  Word cword 14552   ++ cconcat 14608  Basecbs 17247  +gcplusg 17297  Mndcmnd 18747  freeMndcfrmd 18860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-frmd 18862
This theorem is referenced by:  frmdsssubm  18874  frmdgsum  18875  frmdup1  18877  frgp0  19778  frgpadd  19781  frgpmhm  19783  mrsubff  35517  mrsubccat  35523  elmrsubrn  35525
  Copyright terms: Public domain W3C validator