MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdmnd Structured version   Visualization version   GIF version

Theorem frmdmnd 18885
Description: A free monoid is a monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypothesis
Ref Expression
frmdmnd.m 𝑀 = (freeMnd‘𝐼)
Assertion
Ref Expression
frmdmnd (𝐼𝑉𝑀 ∈ Mnd)

Proof of Theorem frmdmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2736 . 2 (𝐼𝑉 → (Base‘𝑀) = (Base‘𝑀))
2 eqidd 2736 . 2 (𝐼𝑉 → (+g𝑀) = (+g𝑀))
3 frmdmnd.m . . . . . 6 𝑀 = (freeMnd‘𝐼)
4 eqid 2735 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
5 eqid 2735 . . . . . 6 (+g𝑀) = (+g𝑀)
63, 4, 5frmdadd 18881 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) = (𝑥 ++ 𝑦))
73, 4frmdelbas 18879 . . . . . 6 (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ Word 𝐼)
83, 4frmdelbas 18879 . . . . . 6 (𝑦 ∈ (Base‘𝑀) → 𝑦 ∈ Word 𝐼)
9 ccatcl 14609 . . . . . 6 ((𝑥 ∈ Word 𝐼𝑦 ∈ Word 𝐼) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
107, 8, 9syl2an 596 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
116, 10eqeltrd 2839 . . . 4 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ Word 𝐼)
12113adant1 1129 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ Word 𝐼)
133, 4frmdbas 18878 . . . 4 (𝐼𝑉 → (Base‘𝑀) = Word 𝐼)
14133ad2ant1 1132 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (Base‘𝑀) = Word 𝐼)
1512, 14eleqtrrd 2842 . 2 ((𝐼𝑉𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
16 simpr1 1193 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘𝑀))
1716, 7syl 17 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑥 ∈ Word 𝐼)
18 simpr2 1194 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀))
1918, 8syl 17 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑦 ∈ Word 𝐼)
20 simpr3 1195 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑧 ∈ (Base‘𝑀))
213, 4frmdelbas 18879 . . . . . 6 (𝑧 ∈ (Base‘𝑀) → 𝑧 ∈ Word 𝐼)
2220, 21syl 17 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑧 ∈ Word 𝐼)
23 ccatass 14623 . . . . 5 ((𝑥 ∈ Word 𝐼𝑦 ∈ Word 𝐼𝑧 ∈ Word 𝐼) → ((𝑥 ++ 𝑦) ++ 𝑧) = (𝑥 ++ (𝑦 ++ 𝑧)))
2417, 19, 22, 23syl3anc 1370 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥 ++ 𝑦) ++ 𝑧) = (𝑥 ++ (𝑦 ++ 𝑧)))
2516, 18, 10syl2anc 584 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
2613adantr 480 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (Base‘𝑀) = Word 𝐼)
2725, 26eleqtrrd 2842 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥 ++ 𝑦) ∈ (Base‘𝑀))
283, 4, 5frmdadd 18881 . . . . 5 (((𝑥 ++ 𝑦) ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀)) → ((𝑥 ++ 𝑦)(+g𝑀)𝑧) = ((𝑥 ++ 𝑦) ++ 𝑧))
2927, 20, 28syl2anc 584 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥 ++ 𝑦)(+g𝑀)𝑧) = ((𝑥 ++ 𝑦) ++ 𝑧))
30 ccatcl 14609 . . . . . . 7 ((𝑦 ∈ Word 𝐼𝑧 ∈ Word 𝐼) → (𝑦 ++ 𝑧) ∈ Word 𝐼)
3119, 22, 30syl2anc 584 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦 ++ 𝑧) ∈ Word 𝐼)
3231, 26eleqtrrd 2842 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦 ++ 𝑧) ∈ (Base‘𝑀))
333, 4, 5frmdadd 18881 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ (𝑦 ++ 𝑧) ∈ (Base‘𝑀)) → (𝑥(+g𝑀)(𝑦 ++ 𝑧)) = (𝑥 ++ (𝑦 ++ 𝑧)))
3416, 32, 33syl2anc 584 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)(𝑦 ++ 𝑧)) = (𝑥 ++ (𝑦 ++ 𝑧)))
3524, 29, 343eqtr4d 2785 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥 ++ 𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦 ++ 𝑧)))
3616, 18, 6syl2anc 584 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)𝑦) = (𝑥 ++ 𝑦))
3736oveq1d 7446 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = ((𝑥 ++ 𝑦)(+g𝑀)𝑧))
383, 4, 5frmdadd 18881 . . . . 5 ((𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀)) → (𝑦(+g𝑀)𝑧) = (𝑦 ++ 𝑧))
3918, 20, 38syl2anc 584 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦(+g𝑀)𝑧) = (𝑦 ++ 𝑧))
4039oveq2d 7447 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)) = (𝑥(+g𝑀)(𝑦 ++ 𝑧)))
4135, 37, 403eqtr4d 2785 . 2 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
42 wrd0 14574 . . 3 ∅ ∈ Word 𝐼
4342, 13eleqtrrid 2846 . 2 (𝐼𝑉 → ∅ ∈ (Base‘𝑀))
443, 4, 5frmdadd 18881 . . . 4 ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = (∅ ++ 𝑥))
4543, 44sylan 580 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = (∅ ++ 𝑥))
467adantl 481 . . . 4 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → 𝑥 ∈ Word 𝐼)
47 ccatlid 14621 . . . 4 (𝑥 ∈ Word 𝐼 → (∅ ++ 𝑥) = 𝑥)
4846, 47syl 17 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (∅ ++ 𝑥) = 𝑥)
4945, 48eqtrd 2775 . 2 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = 𝑥)
503, 4, 5frmdadd 18881 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ ∅ ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
5150ancoms 458 . . . 4 ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
5243, 51sylan 580 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
53 ccatrid 14622 . . . 4 (𝑥 ∈ Word 𝐼 → (𝑥 ++ ∅) = 𝑥)
5446, 53syl 17 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (𝑥 ++ ∅) = 𝑥)
5552, 54eqtrd 2775 . 2 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = 𝑥)
561, 2, 15, 41, 43, 49, 55ismndd 18782 1 (𝐼𝑉𝑀 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  c0 4339  cfv 6563  (class class class)co 7431  Word cword 14549   ++ cconcat 14605  Basecbs 17245  +gcplusg 17298  Mndcmnd 18760  freeMndcfrmd 18873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-frmd 18875
This theorem is referenced by:  frmdsssubm  18887  frmdgsum  18888  frmdup1  18890  frgp0  19793  frgpadd  19796  frgpmhm  19798  mrsubff  35497  mrsubccat  35503  elmrsubrn  35505
  Copyright terms: Public domain W3C validator