Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. 2
⊢ (𝐼 ∈ 𝑉 → (Base‘𝑀) = (Base‘𝑀)) |
2 | | eqidd 2739 |
. 2
⊢ (𝐼 ∈ 𝑉 → (+g‘𝑀) = (+g‘𝑀)) |
3 | | frmdmnd.m |
. . . . . 6
⊢ 𝑀 = (freeMnd‘𝐼) |
4 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑀) =
(Base‘𝑀) |
5 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝑀) = (+g‘𝑀) |
6 | 3, 4, 5 | frmdadd 18494 |
. . . . 5
⊢ ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ++ 𝑦)) |
7 | 3, 4 | frmdelbas 18492 |
. . . . . 6
⊢ (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ Word 𝐼) |
8 | 3, 4 | frmdelbas 18492 |
. . . . . 6
⊢ (𝑦 ∈ (Base‘𝑀) → 𝑦 ∈ Word 𝐼) |
9 | | ccatcl 14277 |
. . . . . 6
⊢ ((𝑥 ∈ Word 𝐼 ∧ 𝑦 ∈ Word 𝐼) → (𝑥 ++ 𝑦) ∈ Word 𝐼) |
10 | 7, 8, 9 | syl2an 596 |
. . . . 5
⊢ ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥 ++ 𝑦) ∈ Word 𝐼) |
11 | 6, 10 | eqeltrd 2839 |
. . . 4
⊢ ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) ∈ Word 𝐼) |
12 | 11 | 3adant1 1129 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) ∈ Word 𝐼) |
13 | 3, 4 | frmdbas 18491 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → (Base‘𝑀) = Word 𝐼) |
14 | 13 | 3ad2ant1 1132 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (Base‘𝑀) = Word 𝐼) |
15 | 12, 14 | eleqtrrd 2842 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) |
16 | | simpr1 1193 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘𝑀)) |
17 | 16, 7 | syl 17 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑥 ∈ Word 𝐼) |
18 | | simpr2 1194 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀)) |
19 | 18, 8 | syl 17 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑦 ∈ Word 𝐼) |
20 | | simpr3 1195 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑧 ∈ (Base‘𝑀)) |
21 | 3, 4 | frmdelbas 18492 |
. . . . . 6
⊢ (𝑧 ∈ (Base‘𝑀) → 𝑧 ∈ Word 𝐼) |
22 | 20, 21 | syl 17 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑧 ∈ Word 𝐼) |
23 | | ccatass 14293 |
. . . . 5
⊢ ((𝑥 ∈ Word 𝐼 ∧ 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ Word 𝐼) → ((𝑥 ++ 𝑦) ++ 𝑧) = (𝑥 ++ (𝑦 ++ 𝑧))) |
24 | 17, 19, 22, 23 | syl3anc 1370 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥 ++ 𝑦) ++ 𝑧) = (𝑥 ++ (𝑦 ++ 𝑧))) |
25 | 16, 18, 10 | syl2anc 584 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥 ++ 𝑦) ∈ Word 𝐼) |
26 | 13 | adantr 481 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (Base‘𝑀) = Word 𝐼) |
27 | 25, 26 | eleqtrrd 2842 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥 ++ 𝑦) ∈ (Base‘𝑀)) |
28 | 3, 4, 5 | frmdadd 18494 |
. . . . 5
⊢ (((𝑥 ++ 𝑦) ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀)) → ((𝑥 ++ 𝑦)(+g‘𝑀)𝑧) = ((𝑥 ++ 𝑦) ++ 𝑧)) |
29 | 27, 20, 28 | syl2anc 584 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥 ++ 𝑦)(+g‘𝑀)𝑧) = ((𝑥 ++ 𝑦) ++ 𝑧)) |
30 | | ccatcl 14277 |
. . . . . . 7
⊢ ((𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ Word 𝐼) → (𝑦 ++ 𝑧) ∈ Word 𝐼) |
31 | 19, 22, 30 | syl2anc 584 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦 ++ 𝑧) ∈ Word 𝐼) |
32 | 31, 26 | eleqtrrd 2842 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦 ++ 𝑧) ∈ (Base‘𝑀)) |
33 | 3, 4, 5 | frmdadd 18494 |
. . . . 5
⊢ ((𝑥 ∈ (Base‘𝑀) ∧ (𝑦 ++ 𝑧) ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)(𝑦 ++ 𝑧)) = (𝑥 ++ (𝑦 ++ 𝑧))) |
34 | 16, 32, 33 | syl2anc 584 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥(+g‘𝑀)(𝑦 ++ 𝑧)) = (𝑥 ++ (𝑦 ++ 𝑧))) |
35 | 24, 29, 34 | 3eqtr4d 2788 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥 ++ 𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦 ++ 𝑧))) |
36 | 16, 18, 6 | syl2anc 584 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ++ 𝑦)) |
37 | 36 | oveq1d 7290 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = ((𝑥 ++ 𝑦)(+g‘𝑀)𝑧)) |
38 | 3, 4, 5 | frmdadd 18494 |
. . . . 5
⊢ ((𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀)) → (𝑦(+g‘𝑀)𝑧) = (𝑦 ++ 𝑧)) |
39 | 18, 20, 38 | syl2anc 584 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦(+g‘𝑀)𝑧) = (𝑦 ++ 𝑧)) |
40 | 39 | oveq2d 7291 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧)) = (𝑥(+g‘𝑀)(𝑦 ++ 𝑧))) |
41 | 35, 37, 40 | 3eqtr4d 2788 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧))) |
42 | | wrd0 14242 |
. . 3
⊢ ∅
∈ Word 𝐼 |
43 | 42, 13 | eleqtrrid 2846 |
. 2
⊢ (𝐼 ∈ 𝑉 → ∅ ∈ (Base‘𝑀)) |
44 | 3, 4, 5 | frmdadd 18494 |
. . . 4
⊢ ((∅
∈ (Base‘𝑀) ∧
𝑥 ∈ (Base‘𝑀)) →
(∅(+g‘𝑀)𝑥) = (∅ ++ 𝑥)) |
45 | 43, 44 | sylan 580 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g‘𝑀)𝑥) = (∅ ++ 𝑥)) |
46 | 7 | adantl 482 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥 ∈ Word 𝐼) |
47 | | ccatlid 14291 |
. . . 4
⊢ (𝑥 ∈ Word 𝐼 → (∅ ++ 𝑥) = 𝑥) |
48 | 46, 47 | syl 17 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝑀)) → (∅ ++ 𝑥) = 𝑥) |
49 | 45, 48 | eqtrd 2778 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g‘𝑀)𝑥) = 𝑥) |
50 | 3, 4, 5 | frmdadd 18494 |
. . . . 5
⊢ ((𝑥 ∈ (Base‘𝑀) ∧ ∅ ∈
(Base‘𝑀)) →
(𝑥(+g‘𝑀)∅) = (𝑥 ++ ∅)) |
51 | 50 | ancoms 459 |
. . . 4
⊢ ((∅
∈ (Base‘𝑀) ∧
𝑥 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = (𝑥 ++ ∅)) |
52 | 43, 51 | sylan 580 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = (𝑥 ++ ∅)) |
53 | | ccatrid 14292 |
. . . 4
⊢ (𝑥 ∈ Word 𝐼 → (𝑥 ++ ∅) = 𝑥) |
54 | 46, 53 | syl 17 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥 ++ ∅) = 𝑥) |
55 | 52, 54 | eqtrd 2778 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = 𝑥) |
56 | 1, 2, 15, 41, 43, 49, 55 | ismndd 18407 |
1
⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd) |