Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > istrnN | Structured version Visualization version GIF version |
Description: The predicate "is a translation". (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
trnset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
trnset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
trnset.p | ⊢ + = (+𝑃‘𝐾) |
trnset.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
trnset.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
trnset.m | ⊢ 𝑀 = (PAut‘𝐾) |
trnset.l | ⊢ 𝐿 = (Dil‘𝐾) |
trnset.t | ⊢ 𝑇 = (Trn‘𝐾) |
Ref | Expression |
---|---|
istrnN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐹 ∈ (𝑇‘𝐷) ↔ (𝐹 ∈ (𝐿‘𝐷) ∧ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝐹‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝐹‘𝑟)) ∩ ( ⊥ ‘{𝐷}))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trnset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | trnset.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
3 | trnset.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
4 | trnset.o | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
5 | trnset.w | . . . 4 ⊢ 𝑊 = (WAtoms‘𝐾) | |
6 | trnset.m | . . . 4 ⊢ 𝑀 = (PAut‘𝐾) | |
7 | trnset.l | . . . 4 ⊢ 𝐿 = (Dil‘𝐾) | |
8 | trnset.t | . . . 4 ⊢ 𝑇 = (Trn‘𝐾) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | trnsetN 38170 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑇‘𝐷) = {𝑓 ∈ (𝐿‘𝐷) ∣ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))}) |
10 | 9 | eleq2d 2824 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐹 ∈ (𝑇‘𝐷) ↔ 𝐹 ∈ {𝑓 ∈ (𝐿‘𝐷) ∣ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))})) |
11 | fveq1 6773 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑞) = (𝐹‘𝑞)) | |
12 | 11 | oveq2d 7291 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑞 + (𝑓‘𝑞)) = (𝑞 + (𝐹‘𝑞))) |
13 | 12 | ineq1d 4145 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑞 + (𝐹‘𝑞)) ∩ ( ⊥ ‘{𝐷}))) |
14 | fveq1 6773 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑟) = (𝐹‘𝑟)) | |
15 | 14 | oveq2d 7291 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑟 + (𝑓‘𝑟)) = (𝑟 + (𝐹‘𝑟))) |
16 | 15 | ineq1d 4145 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝐹‘𝑟)) ∩ ( ⊥ ‘{𝐷}))) |
17 | 13, 16 | eqeq12d 2754 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷})) ↔ ((𝑞 + (𝐹‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝐹‘𝑟)) ∩ ( ⊥ ‘{𝐷})))) |
18 | 17 | 2ralbidv 3129 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷})) ↔ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝐹‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝐹‘𝑟)) ∩ ( ⊥ ‘{𝐷})))) |
19 | 18 | elrab 3624 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (𝐿‘𝐷) ∣ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))} ↔ (𝐹 ∈ (𝐿‘𝐷) ∧ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝐹‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝐹‘𝑟)) ∩ ( ⊥ ‘{𝐷})))) |
20 | 10, 19 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐹 ∈ (𝑇‘𝐷) ↔ (𝐹 ∈ (𝐿‘𝐷) ∧ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝐹‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝐹‘𝑟)) ∩ ( ⊥ ‘{𝐷}))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ∩ cin 3886 {csn 4561 ‘cfv 6433 (class class class)co 7275 Atomscatm 37277 PSubSpcpsubsp 37510 +𝑃cpadd 37809 ⊥𝑃cpolN 37916 WAtomscwpointsN 38000 PAutcpautN 38001 DilcdilN 38116 TrnctrnN 38117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-trnN 38121 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |