| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > istrnN | Structured version Visualization version GIF version | ||
| Description: The predicate "is a translation". (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| trnset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| trnset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| trnset.p | ⊢ + = (+𝑃‘𝐾) |
| trnset.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| trnset.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
| trnset.m | ⊢ 𝑀 = (PAut‘𝐾) |
| trnset.l | ⊢ 𝐿 = (Dil‘𝐾) |
| trnset.t | ⊢ 𝑇 = (Trn‘𝐾) |
| Ref | Expression |
|---|---|
| istrnN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐹 ∈ (𝑇‘𝐷) ↔ (𝐹 ∈ (𝐿‘𝐷) ∧ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝐹‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝐹‘𝑟)) ∩ ( ⊥ ‘{𝐷}))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trnset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | trnset.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 3 | trnset.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
| 4 | trnset.o | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 5 | trnset.w | . . . 4 ⊢ 𝑊 = (WAtoms‘𝐾) | |
| 6 | trnset.m | . . . 4 ⊢ 𝑀 = (PAut‘𝐾) | |
| 7 | trnset.l | . . . 4 ⊢ 𝐿 = (Dil‘𝐾) | |
| 8 | trnset.t | . . . 4 ⊢ 𝑇 = (Trn‘𝐾) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | trnsetN 40135 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑇‘𝐷) = {𝑓 ∈ (𝐿‘𝐷) ∣ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))}) |
| 10 | 9 | eleq2d 2814 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐹 ∈ (𝑇‘𝐷) ↔ 𝐹 ∈ {𝑓 ∈ (𝐿‘𝐷) ∣ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))})) |
| 11 | fveq1 6821 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑞) = (𝐹‘𝑞)) | |
| 12 | 11 | oveq2d 7365 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑞 + (𝑓‘𝑞)) = (𝑞 + (𝐹‘𝑞))) |
| 13 | 12 | ineq1d 4170 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑞 + (𝐹‘𝑞)) ∩ ( ⊥ ‘{𝐷}))) |
| 14 | fveq1 6821 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑟) = (𝐹‘𝑟)) | |
| 15 | 14 | oveq2d 7365 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑟 + (𝑓‘𝑟)) = (𝑟 + (𝐹‘𝑟))) |
| 16 | 15 | ineq1d 4170 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝐹‘𝑟)) ∩ ( ⊥ ‘{𝐷}))) |
| 17 | 13, 16 | eqeq12d 2745 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷})) ↔ ((𝑞 + (𝐹‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝐹‘𝑟)) ∩ ( ⊥ ‘{𝐷})))) |
| 18 | 17 | 2ralbidv 3193 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷})) ↔ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝐹‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝐹‘𝑟)) ∩ ( ⊥ ‘{𝐷})))) |
| 19 | 18 | elrab 3648 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (𝐿‘𝐷) ∣ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))} ↔ (𝐹 ∈ (𝐿‘𝐷) ∧ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝐹‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝐹‘𝑟)) ∩ ( ⊥ ‘{𝐷})))) |
| 20 | 10, 19 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐹 ∈ (𝑇‘𝐷) ↔ (𝐹 ∈ (𝐿‘𝐷) ∧ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝐹‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝐹‘𝑟)) ∩ ( ⊥ ‘{𝐷}))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3394 ∩ cin 3902 {csn 4577 ‘cfv 6482 (class class class)co 7349 Atomscatm 39242 PSubSpcpsubsp 39475 +𝑃cpadd 39774 ⊥𝑃cpolN 39881 WAtomscwpointsN 39965 PAutcpautN 39966 DilcdilN 40081 TrnctrnN 40082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-trnN 40086 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |