![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > istrnN | Structured version Visualization version GIF version |
Description: The predicate "is a translation". (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
trnset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
trnset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
trnset.p | ⊢ + = (+𝑃‘𝐾) |
trnset.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
trnset.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
trnset.m | ⊢ 𝑀 = (PAut‘𝐾) |
trnset.l | ⊢ 𝐿 = (Dil‘𝐾) |
trnset.t | ⊢ 𝑇 = (Trn‘𝐾) |
Ref | Expression |
---|---|
istrnN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐹 ∈ (𝑇‘𝐷) ↔ (𝐹 ∈ (𝐿‘𝐷) ∧ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝐹‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝐹‘𝑟)) ∩ ( ⊥ ‘{𝐷}))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trnset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | trnset.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
3 | trnset.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
4 | trnset.o | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
5 | trnset.w | . . . 4 ⊢ 𝑊 = (WAtoms‘𝐾) | |
6 | trnset.m | . . . 4 ⊢ 𝑀 = (PAut‘𝐾) | |
7 | trnset.l | . . . 4 ⊢ 𝐿 = (Dil‘𝐾) | |
8 | trnset.t | . . . 4 ⊢ 𝑇 = (Trn‘𝐾) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | trnsetN 40115 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑇‘𝐷) = {𝑓 ∈ (𝐿‘𝐷) ∣ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))}) |
10 | 9 | eleq2d 2830 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐹 ∈ (𝑇‘𝐷) ↔ 𝐹 ∈ {𝑓 ∈ (𝐿‘𝐷) ∣ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))})) |
11 | fveq1 6921 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑞) = (𝐹‘𝑞)) | |
12 | 11 | oveq2d 7466 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑞 + (𝑓‘𝑞)) = (𝑞 + (𝐹‘𝑞))) |
13 | 12 | ineq1d 4240 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑞 + (𝐹‘𝑞)) ∩ ( ⊥ ‘{𝐷}))) |
14 | fveq1 6921 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑟) = (𝐹‘𝑟)) | |
15 | 14 | oveq2d 7466 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑟 + (𝑓‘𝑟)) = (𝑟 + (𝐹‘𝑟))) |
16 | 15 | ineq1d 4240 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝐹‘𝑟)) ∩ ( ⊥ ‘{𝐷}))) |
17 | 13, 16 | eqeq12d 2756 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷})) ↔ ((𝑞 + (𝐹‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝐹‘𝑟)) ∩ ( ⊥ ‘{𝐷})))) |
18 | 17 | 2ralbidv 3227 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷})) ↔ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝐹‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝐹‘𝑟)) ∩ ( ⊥ ‘{𝐷})))) |
19 | 18 | elrab 3708 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (𝐿‘𝐷) ∣ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))} ↔ (𝐹 ∈ (𝐿‘𝐷) ∧ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝐹‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝐹‘𝑟)) ∩ ( ⊥ ‘{𝐷})))) |
20 | 10, 19 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐹 ∈ (𝑇‘𝐷) ↔ (𝐹 ∈ (𝐿‘𝐷) ∧ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝐹‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝐹‘𝑟)) ∩ ( ⊥ ‘{𝐷}))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ∩ cin 3975 {csn 4648 ‘cfv 6575 (class class class)co 7450 Atomscatm 39221 PSubSpcpsubsp 39455 +𝑃cpadd 39754 ⊥𝑃cpolN 39861 WAtomscwpointsN 39945 PAutcpautN 39946 DilcdilN 40061 TrnctrnN 40062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-trnN 40066 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |