Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istrnN Structured version   Visualization version   GIF version

Theorem istrnN 40151
Description: The predicate "is a translation". (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
trnset.a 𝐴 = (Atoms‘𝐾)
trnset.s 𝑆 = (PSubSp‘𝐾)
trnset.p + = (+𝑃𝐾)
trnset.o = (⊥𝑃𝐾)
trnset.w 𝑊 = (WAtoms‘𝐾)
trnset.m 𝑀 = (PAut‘𝐾)
trnset.l 𝐿 = (Dil‘𝐾)
trnset.t 𝑇 = (Trn‘𝐾)
Assertion
Ref Expression
istrnN ((𝐾𝐵𝐷𝐴) → (𝐹 ∈ (𝑇𝐷) ↔ (𝐹 ∈ (𝐿𝐷) ∧ ∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝐹𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝐹𝑟)) ∩ ( ‘{𝐷})))))
Distinct variable groups:   𝑟,𝑞,𝐾   𝑊,𝑞,𝑟   𝐷,𝑞,𝑟   𝐹,𝑞,𝑟
Allowed substitution hints:   𝐴(𝑟,𝑞)   𝐵(𝑟,𝑞)   + (𝑟,𝑞)   𝑆(𝑟,𝑞)   𝑇(𝑟,𝑞)   𝐿(𝑟,𝑞)   𝑀(𝑟,𝑞)   (𝑟,𝑞)

Proof of Theorem istrnN
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 trnset.a . . . 4 𝐴 = (Atoms‘𝐾)
2 trnset.s . . . 4 𝑆 = (PSubSp‘𝐾)
3 trnset.p . . . 4 + = (+𝑃𝐾)
4 trnset.o . . . 4 = (⊥𝑃𝐾)
5 trnset.w . . . 4 𝑊 = (WAtoms‘𝐾)
6 trnset.m . . . 4 𝑀 = (PAut‘𝐾)
7 trnset.l . . . 4 𝐿 = (Dil‘𝐾)
8 trnset.t . . . 4 𝑇 = (Trn‘𝐾)
91, 2, 3, 4, 5, 6, 7, 8trnsetN 40150 . . 3 ((𝐾𝐵𝐷𝐴) → (𝑇𝐷) = {𝑓 ∈ (𝐿𝐷) ∣ ∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷}))})
109eleq2d 2814 . 2 ((𝐾𝐵𝐷𝐴) → (𝐹 ∈ (𝑇𝐷) ↔ 𝐹 ∈ {𝑓 ∈ (𝐿𝐷) ∣ ∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷}))}))
11 fveq1 6857 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑞) = (𝐹𝑞))
1211oveq2d 7403 . . . . . 6 (𝑓 = 𝐹 → (𝑞 + (𝑓𝑞)) = (𝑞 + (𝐹𝑞)))
1312ineq1d 4182 . . . . 5 (𝑓 = 𝐹 → ((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑞 + (𝐹𝑞)) ∩ ( ‘{𝐷})))
14 fveq1 6857 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑟) = (𝐹𝑟))
1514oveq2d 7403 . . . . . 6 (𝑓 = 𝐹 → (𝑟 + (𝑓𝑟)) = (𝑟 + (𝐹𝑟)))
1615ineq1d 4182 . . . . 5 (𝑓 = 𝐹 → ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝐹𝑟)) ∩ ( ‘{𝐷})))
1713, 16eqeq12d 2745 . . . 4 (𝑓 = 𝐹 → (((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷})) ↔ ((𝑞 + (𝐹𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝐹𝑟)) ∩ ( ‘{𝐷}))))
18172ralbidv 3201 . . 3 (𝑓 = 𝐹 → (∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷})) ↔ ∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝐹𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝐹𝑟)) ∩ ( ‘{𝐷}))))
1918elrab 3659 . 2 (𝐹 ∈ {𝑓 ∈ (𝐿𝐷) ∣ ∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷}))} ↔ (𝐹 ∈ (𝐿𝐷) ∧ ∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝐹𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝐹𝑟)) ∩ ( ‘{𝐷}))))
2010, 19bitrdi 287 1 ((𝐾𝐵𝐷𝐴) → (𝐹 ∈ (𝑇𝐷) ↔ (𝐹 ∈ (𝐿𝐷) ∧ ∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝐹𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝐹𝑟)) ∩ ( ‘{𝐷})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  cin 3913  {csn 4589  cfv 6511  (class class class)co 7387  Atomscatm 39256  PSubSpcpsubsp 39490  +𝑃cpadd 39789  𝑃cpolN 39896  WAtomscwpointsN 39980  PAutcpautN 39981  DilcdilN 40096  TrnctrnN 40097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-trnN 40101
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator