Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trnsetN Structured version   Visualization version   GIF version

Theorem trnsetN 40153
Description: The set of translations for a fiducial atom 𝐷. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
trnset.a 𝐴 = (Atoms‘𝐾)
trnset.s 𝑆 = (PSubSp‘𝐾)
trnset.p + = (+𝑃𝐾)
trnset.o = (⊥𝑃𝐾)
trnset.w 𝑊 = (WAtoms‘𝐾)
trnset.m 𝑀 = (PAut‘𝐾)
trnset.l 𝐿 = (Dil‘𝐾)
trnset.t 𝑇 = (Trn‘𝐾)
Assertion
Ref Expression
trnsetN ((𝐾𝐵𝐷𝐴) → (𝑇𝐷) = {𝑓 ∈ (𝐿𝐷) ∣ ∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷}))})
Distinct variable groups:   𝑓,𝑞,𝑟,𝐾   𝑓,𝐿   𝑊,𝑞,𝑟   𝐷,𝑓,𝑞,𝑟
Allowed substitution hints:   𝐴(𝑓,𝑟,𝑞)   𝐵(𝑓,𝑟,𝑞)   + (𝑓,𝑟,𝑞)   𝑆(𝑓,𝑟,𝑞)   𝑇(𝑓,𝑟,𝑞)   𝐿(𝑟,𝑞)   𝑀(𝑓,𝑟,𝑞)   (𝑓,𝑟,𝑞)   𝑊(𝑓)

Proof of Theorem trnsetN
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 trnset.a . . . 4 𝐴 = (Atoms‘𝐾)
2 trnset.s . . . 4 𝑆 = (PSubSp‘𝐾)
3 trnset.p . . . 4 + = (+𝑃𝐾)
4 trnset.o . . . 4 = (⊥𝑃𝐾)
5 trnset.w . . . 4 𝑊 = (WAtoms‘𝐾)
6 trnset.m . . . 4 𝑀 = (PAut‘𝐾)
7 trnset.l . . . 4 𝐿 = (Dil‘𝐾)
8 trnset.t . . . 4 𝑇 = (Trn‘𝐾)
91, 2, 3, 4, 5, 6, 7, 8trnfsetN 40152 . . 3 (𝐾𝐵𝑇 = (𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))}))
109fveq1d 6916 . 2 (𝐾𝐵 → (𝑇𝐷) = ((𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))})‘𝐷))
11 fveq2 6914 . . . 4 (𝑑 = 𝐷 → (𝐿𝑑) = (𝐿𝐷))
12 fveq2 6914 . . . . 5 (𝑑 = 𝐷 → (𝑊𝑑) = (𝑊𝐷))
13 sneq 4644 . . . . . . . . 9 (𝑑 = 𝐷 → {𝑑} = {𝐷})
1413fveq2d 6918 . . . . . . . 8 (𝑑 = 𝐷 → ( ‘{𝑑}) = ( ‘{𝐷}))
1514ineq2d 4231 . . . . . . 7 (𝑑 = 𝐷 → ((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})))
1614ineq2d 4231 . . . . . . 7 (𝑑 = 𝐷 → ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷})))
1715, 16eqeq12d 2753 . . . . . 6 (𝑑 = 𝐷 → (((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑})) ↔ ((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷}))))
1812, 17raleqbidv 3346 . . . . 5 (𝑑 = 𝐷 → (∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑})) ↔ ∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷}))))
1912, 18raleqbidv 3346 . . . 4 (𝑑 = 𝐷 → (∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑})) ↔ ∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷}))))
2011, 19rabeqbidv 3455 . . 3 (𝑑 = 𝐷 → {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))} = {𝑓 ∈ (𝐿𝐷) ∣ ∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷}))})
21 eqid 2737 . . 3 (𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))}) = (𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))})
22 fvex 6927 . . . 4 (𝐿𝐷) ∈ V
2322rabex 5348 . . 3 {𝑓 ∈ (𝐿𝐷) ∣ ∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷}))} ∈ V
2420, 21, 23fvmpt 7023 . 2 (𝐷𝐴 → ((𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))})‘𝐷) = {𝑓 ∈ (𝐿𝐷) ∣ ∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷}))})
2510, 24sylan9eq 2797 1 ((𝐾𝐵𝐷𝐴) → (𝑇𝐷) = {𝑓 ∈ (𝐿𝐷) ∣ ∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷}))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3061  {crab 3436  cin 3965  {csn 4634  cmpt 5234  cfv 6569  (class class class)co 7438  Atomscatm 39259  PSubSpcpsubsp 39493  +𝑃cpadd 39792  𝑃cpolN 39899  WAtomscwpointsN 39983  PAutcpautN 39984  DilcdilN 40099  TrnctrnN 40100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-trnN 40104
This theorem is referenced by:  istrnN  40154
  Copyright terms: Public domain W3C validator