Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trnsetN Structured version   Visualization version   GIF version

Theorem trnsetN 38097
Description: The set of translations for a fiducial atom 𝐷. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
trnset.a 𝐴 = (Atoms‘𝐾)
trnset.s 𝑆 = (PSubSp‘𝐾)
trnset.p + = (+𝑃𝐾)
trnset.o = (⊥𝑃𝐾)
trnset.w 𝑊 = (WAtoms‘𝐾)
trnset.m 𝑀 = (PAut‘𝐾)
trnset.l 𝐿 = (Dil‘𝐾)
trnset.t 𝑇 = (Trn‘𝐾)
Assertion
Ref Expression
trnsetN ((𝐾𝐵𝐷𝐴) → (𝑇𝐷) = {𝑓 ∈ (𝐿𝐷) ∣ ∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷}))})
Distinct variable groups:   𝑓,𝑞,𝑟,𝐾   𝑓,𝐿   𝑊,𝑞,𝑟   𝐷,𝑓,𝑞,𝑟
Allowed substitution hints:   𝐴(𝑓,𝑟,𝑞)   𝐵(𝑓,𝑟,𝑞)   + (𝑓,𝑟,𝑞)   𝑆(𝑓,𝑟,𝑞)   𝑇(𝑓,𝑟,𝑞)   𝐿(𝑟,𝑞)   𝑀(𝑓,𝑟,𝑞)   (𝑓,𝑟,𝑞)   𝑊(𝑓)

Proof of Theorem trnsetN
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 trnset.a . . . 4 𝐴 = (Atoms‘𝐾)
2 trnset.s . . . 4 𝑆 = (PSubSp‘𝐾)
3 trnset.p . . . 4 + = (+𝑃𝐾)
4 trnset.o . . . 4 = (⊥𝑃𝐾)
5 trnset.w . . . 4 𝑊 = (WAtoms‘𝐾)
6 trnset.m . . . 4 𝑀 = (PAut‘𝐾)
7 trnset.l . . . 4 𝐿 = (Dil‘𝐾)
8 trnset.t . . . 4 𝑇 = (Trn‘𝐾)
91, 2, 3, 4, 5, 6, 7, 8trnfsetN 38096 . . 3 (𝐾𝐵𝑇 = (𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))}))
109fveq1d 6758 . 2 (𝐾𝐵 → (𝑇𝐷) = ((𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))})‘𝐷))
11 fveq2 6756 . . . 4 (𝑑 = 𝐷 → (𝐿𝑑) = (𝐿𝐷))
12 fveq2 6756 . . . . 5 (𝑑 = 𝐷 → (𝑊𝑑) = (𝑊𝐷))
13 sneq 4568 . . . . . . . . 9 (𝑑 = 𝐷 → {𝑑} = {𝐷})
1413fveq2d 6760 . . . . . . . 8 (𝑑 = 𝐷 → ( ‘{𝑑}) = ( ‘{𝐷}))
1514ineq2d 4143 . . . . . . 7 (𝑑 = 𝐷 → ((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})))
1614ineq2d 4143 . . . . . . 7 (𝑑 = 𝐷 → ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷})))
1715, 16eqeq12d 2754 . . . . . 6 (𝑑 = 𝐷 → (((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑})) ↔ ((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷}))))
1812, 17raleqbidv 3327 . . . . 5 (𝑑 = 𝐷 → (∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑})) ↔ ∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷}))))
1912, 18raleqbidv 3327 . . . 4 (𝑑 = 𝐷 → (∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑})) ↔ ∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷}))))
2011, 19rabeqbidv 3410 . . 3 (𝑑 = 𝐷 → {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))} = {𝑓 ∈ (𝐿𝐷) ∣ ∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷}))})
21 eqid 2738 . . 3 (𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))}) = (𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))})
22 fvex 6769 . . . 4 (𝐿𝐷) ∈ V
2322rabex 5251 . . 3 {𝑓 ∈ (𝐿𝐷) ∣ ∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷}))} ∈ V
2420, 21, 23fvmpt 6857 . 2 (𝐷𝐴 → ((𝑑𝐴 ↦ {𝑓 ∈ (𝐿𝑑) ∣ ∀𝑞 ∈ (𝑊𝑑)∀𝑟 ∈ (𝑊𝑑)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝑑})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝑑}))})‘𝐷) = {𝑓 ∈ (𝐿𝐷) ∣ ∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷}))})
2510, 24sylan9eq 2799 1 ((𝐾𝐵𝐷𝐴) → (𝑇𝐷) = {𝑓 ∈ (𝐿𝐷) ∣ ∀𝑞 ∈ (𝑊𝐷)∀𝑟 ∈ (𝑊𝐷)((𝑞 + (𝑓𝑞)) ∩ ( ‘{𝐷})) = ((𝑟 + (𝑓𝑟)) ∩ ( ‘{𝐷}))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  cin 3882  {csn 4558  cmpt 5153  cfv 6418  (class class class)co 7255  Atomscatm 37204  PSubSpcpsubsp 37437  +𝑃cpadd 37736  𝑃cpolN 37843  WAtomscwpointsN 37927  PAutcpautN 37928  DilcdilN 38043  TrnctrnN 38044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-trnN 38048
This theorem is referenced by:  istrnN  38098
  Copyright terms: Public domain W3C validator