| Step | Hyp | Ref
| Expression |
| 1 | | trnset.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 2 | | trnset.s |
. . . 4
⊢ 𝑆 = (PSubSp‘𝐾) |
| 3 | | trnset.p |
. . . 4
⊢ + =
(+𝑃‘𝐾) |
| 4 | | trnset.o |
. . . 4
⊢ ⊥ =
(⊥𝑃‘𝐾) |
| 5 | | trnset.w |
. . . 4
⊢ 𝑊 = (WAtoms‘𝐾) |
| 6 | | trnset.m |
. . . 4
⊢ 𝑀 = (PAut‘𝐾) |
| 7 | | trnset.l |
. . . 4
⊢ 𝐿 = (Dil‘𝐾) |
| 8 | | trnset.t |
. . . 4
⊢ 𝑇 = (Trn‘𝐾) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | trnfsetN 40116 |
. . 3
⊢ (𝐾 ∈ 𝐵 → 𝑇 = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ (𝐿‘𝑑) ∣ ∀𝑞 ∈ (𝑊‘𝑑)∀𝑟 ∈ (𝑊‘𝑑)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑}))})) |
| 10 | 9 | fveq1d 6888 |
. 2
⊢ (𝐾 ∈ 𝐵 → (𝑇‘𝐷) = ((𝑑 ∈ 𝐴 ↦ {𝑓 ∈ (𝐿‘𝑑) ∣ ∀𝑞 ∈ (𝑊‘𝑑)∀𝑟 ∈ (𝑊‘𝑑)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑}))})‘𝐷)) |
| 11 | | fveq2 6886 |
. . . 4
⊢ (𝑑 = 𝐷 → (𝐿‘𝑑) = (𝐿‘𝐷)) |
| 12 | | fveq2 6886 |
. . . . 5
⊢ (𝑑 = 𝐷 → (𝑊‘𝑑) = (𝑊‘𝐷)) |
| 13 | | sneq 4616 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → {𝑑} = {𝐷}) |
| 14 | 13 | fveq2d 6890 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ( ⊥ ‘{𝑑}) = ( ⊥ ‘{𝐷})) |
| 15 | 14 | ineq2d 4200 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → ((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷}))) |
| 16 | 14 | ineq2d 4200 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))) |
| 17 | 15, 16 | eqeq12d 2750 |
. . . . . 6
⊢ (𝑑 = 𝐷 → (((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑})) ↔ ((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷})))) |
| 18 | 12, 17 | raleqbidv 3329 |
. . . . 5
⊢ (𝑑 = 𝐷 → (∀𝑟 ∈ (𝑊‘𝑑)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑})) ↔ ∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷})))) |
| 19 | 12, 18 | raleqbidv 3329 |
. . . 4
⊢ (𝑑 = 𝐷 → (∀𝑞 ∈ (𝑊‘𝑑)∀𝑟 ∈ (𝑊‘𝑑)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑})) ↔ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷})))) |
| 20 | 11, 19 | rabeqbidv 3438 |
. . 3
⊢ (𝑑 = 𝐷 → {𝑓 ∈ (𝐿‘𝑑) ∣ ∀𝑞 ∈ (𝑊‘𝑑)∀𝑟 ∈ (𝑊‘𝑑)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑}))} = {𝑓 ∈ (𝐿‘𝐷) ∣ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))}) |
| 21 | | eqid 2734 |
. . 3
⊢ (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ (𝐿‘𝑑) ∣ ∀𝑞 ∈ (𝑊‘𝑑)∀𝑟 ∈ (𝑊‘𝑑)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑}))}) = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ (𝐿‘𝑑) ∣ ∀𝑞 ∈ (𝑊‘𝑑)∀𝑟 ∈ (𝑊‘𝑑)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑}))}) |
| 22 | | fvex 6899 |
. . . 4
⊢ (𝐿‘𝐷) ∈ V |
| 23 | 22 | rabex 5319 |
. . 3
⊢ {𝑓 ∈ (𝐿‘𝐷) ∣ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))} ∈ V |
| 24 | 20, 21, 23 | fvmpt 6996 |
. 2
⊢ (𝐷 ∈ 𝐴 → ((𝑑 ∈ 𝐴 ↦ {𝑓 ∈ (𝐿‘𝑑) ∣ ∀𝑞 ∈ (𝑊‘𝑑)∀𝑟 ∈ (𝑊‘𝑑)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑}))})‘𝐷) = {𝑓 ∈ (𝐿‘𝐷) ∣ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))}) |
| 25 | 10, 24 | sylan9eq 2789 |
1
⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑇‘𝐷) = {𝑓 ∈ (𝐿‘𝐷) ∣ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))}) |