Step | Hyp | Ref
| Expression |
1 | | trnset.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
2 | | trnset.s |
. . . 4
⊢ 𝑆 = (PSubSp‘𝐾) |
3 | | trnset.p |
. . . 4
⊢ + =
(+𝑃‘𝐾) |
4 | | trnset.o |
. . . 4
⊢ ⊥ =
(⊥𝑃‘𝐾) |
5 | | trnset.w |
. . . 4
⊢ 𝑊 = (WAtoms‘𝐾) |
6 | | trnset.m |
. . . 4
⊢ 𝑀 = (PAut‘𝐾) |
7 | | trnset.l |
. . . 4
⊢ 𝐿 = (Dil‘𝐾) |
8 | | trnset.t |
. . . 4
⊢ 𝑇 = (Trn‘𝐾) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | trnfsetN 38096 |
. . 3
⊢ (𝐾 ∈ 𝐵 → 𝑇 = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ (𝐿‘𝑑) ∣ ∀𝑞 ∈ (𝑊‘𝑑)∀𝑟 ∈ (𝑊‘𝑑)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑}))})) |
10 | 9 | fveq1d 6758 |
. 2
⊢ (𝐾 ∈ 𝐵 → (𝑇‘𝐷) = ((𝑑 ∈ 𝐴 ↦ {𝑓 ∈ (𝐿‘𝑑) ∣ ∀𝑞 ∈ (𝑊‘𝑑)∀𝑟 ∈ (𝑊‘𝑑)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑}))})‘𝐷)) |
11 | | fveq2 6756 |
. . . 4
⊢ (𝑑 = 𝐷 → (𝐿‘𝑑) = (𝐿‘𝐷)) |
12 | | fveq2 6756 |
. . . . 5
⊢ (𝑑 = 𝐷 → (𝑊‘𝑑) = (𝑊‘𝐷)) |
13 | | sneq 4568 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → {𝑑} = {𝐷}) |
14 | 13 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ( ⊥ ‘{𝑑}) = ( ⊥ ‘{𝐷})) |
15 | 14 | ineq2d 4143 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → ((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷}))) |
16 | 14 | ineq2d 4143 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))) |
17 | 15, 16 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑑 = 𝐷 → (((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑})) ↔ ((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷})))) |
18 | 12, 17 | raleqbidv 3327 |
. . . . 5
⊢ (𝑑 = 𝐷 → (∀𝑟 ∈ (𝑊‘𝑑)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑})) ↔ ∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷})))) |
19 | 12, 18 | raleqbidv 3327 |
. . . 4
⊢ (𝑑 = 𝐷 → (∀𝑞 ∈ (𝑊‘𝑑)∀𝑟 ∈ (𝑊‘𝑑)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑})) ↔ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷})))) |
20 | 11, 19 | rabeqbidv 3410 |
. . 3
⊢ (𝑑 = 𝐷 → {𝑓 ∈ (𝐿‘𝑑) ∣ ∀𝑞 ∈ (𝑊‘𝑑)∀𝑟 ∈ (𝑊‘𝑑)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑}))} = {𝑓 ∈ (𝐿‘𝐷) ∣ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))}) |
21 | | eqid 2738 |
. . 3
⊢ (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ (𝐿‘𝑑) ∣ ∀𝑞 ∈ (𝑊‘𝑑)∀𝑟 ∈ (𝑊‘𝑑)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑}))}) = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ (𝐿‘𝑑) ∣ ∀𝑞 ∈ (𝑊‘𝑑)∀𝑟 ∈ (𝑊‘𝑑)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑}))}) |
22 | | fvex 6769 |
. . . 4
⊢ (𝐿‘𝐷) ∈ V |
23 | 22 | rabex 5251 |
. . 3
⊢ {𝑓 ∈ (𝐿‘𝐷) ∣ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))} ∈ V |
24 | 20, 21, 23 | fvmpt 6857 |
. 2
⊢ (𝐷 ∈ 𝐴 → ((𝑑 ∈ 𝐴 ↦ {𝑓 ∈ (𝐿‘𝑑) ∣ ∀𝑞 ∈ (𝑊‘𝑑)∀𝑟 ∈ (𝑊‘𝑑)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑}))})‘𝐷) = {𝑓 ∈ (𝐿‘𝐷) ∣ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))}) |
25 | 10, 24 | sylan9eq 2799 |
1
⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑇‘𝐷) = {𝑓 ∈ (𝐿‘𝐷) ∣ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))}) |