| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixxss1 | Structured version Visualization version GIF version | ||
| Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
| ixxss1.2 | ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑆𝑦)}) |
| ixxss1.3 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵 ∧ 𝐵𝑇𝑤) → 𝐴𝑅𝑤)) |
| Ref | Expression |
|---|---|
| ixxss1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) → (𝐵𝑃𝐶) ⊆ (𝐴𝑂𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixxss1.2 | . . . . . . . 8 ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑆𝑦)}) | |
| 2 | 1 | elixx3g 13261 | . . . . . . 7 ⊢ (𝑤 ∈ (𝐵𝑃𝐶) ↔ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐵𝑇𝑤 ∧ 𝑤𝑆𝐶))) |
| 3 | 2 | simplbi 497 | . . . . . 6 ⊢ (𝑤 ∈ (𝐵𝑃𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)) |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)) |
| 5 | 4 | simp3d 1144 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤 ∈ ℝ*) |
| 6 | simplr 768 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑊𝐵) | |
| 7 | 2 | simprbi 496 | . . . . . . 7 ⊢ (𝑤 ∈ (𝐵𝑃𝐶) → (𝐵𝑇𝑤 ∧ 𝑤𝑆𝐶)) |
| 8 | 7 | adantl 481 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝐵𝑇𝑤 ∧ 𝑤𝑆𝐶)) |
| 9 | 8 | simpld 494 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵𝑇𝑤) |
| 10 | simpll 766 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴 ∈ ℝ*) | |
| 11 | 4 | simp1d 1142 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵 ∈ ℝ*) |
| 12 | ixxss1.3 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵 ∧ 𝐵𝑇𝑤) → 𝐴𝑅𝑤)) | |
| 13 | 10, 11, 5, 12 | syl3anc 1373 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → ((𝐴𝑊𝐵 ∧ 𝐵𝑇𝑤) → 𝐴𝑅𝑤)) |
| 14 | 6, 9, 13 | mp2and 699 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑅𝑤) |
| 15 | 8 | simprd 495 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤𝑆𝐶) |
| 16 | 4 | simp2d 1143 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐶 ∈ ℝ*) |
| 17 | ixx.1 | . . . . . 6 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
| 18 | 17 | elixx1 13257 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐶))) |
| 19 | 10, 16, 18 | syl2anc 584 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐶))) |
| 20 | 5, 14, 15, 19 | mpbir3and 1343 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤 ∈ (𝐴𝑂𝐶)) |
| 21 | 20 | ex 412 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) → (𝑤 ∈ (𝐵𝑃𝐶) → 𝑤 ∈ (𝐴𝑂𝐶))) |
| 22 | 21 | ssrdv 3941 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) → (𝐵𝑃𝐶) ⊆ (𝐴𝑂𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3394 ⊆ wss 3903 class class class wbr 5092 (class class class)co 7349 ∈ cmpo 7351 ℝ*cxr 11148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-xr 11153 |
| This theorem is referenced by: iooss1 13283 limsupgord 15379 pnfnei 23105 dvfsumrlimge0 25935 dvfsumrlim2 25937 tanord1 26444 rlimcnp 26873 rlimcnp2 26874 dchrisum0lem2a 27426 pntleml 27520 pnt 27523 liminfgord 45735 |
| Copyright terms: Public domain | W3C validator |