Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixxss1 | Structured version Visualization version GIF version |
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
ixxss1.2 | ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑆𝑦)}) |
ixxss1.3 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵 ∧ 𝐵𝑇𝑤) → 𝐴𝑅𝑤)) |
Ref | Expression |
---|---|
ixxss1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) → (𝐵𝑃𝐶) ⊆ (𝐴𝑂𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixxss1.2 | . . . . . . . 8 ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑆𝑦)}) | |
2 | 1 | elixx3g 13074 | . . . . . . 7 ⊢ (𝑤 ∈ (𝐵𝑃𝐶) ↔ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐵𝑇𝑤 ∧ 𝑤𝑆𝐶))) |
3 | 2 | simplbi 497 | . . . . . 6 ⊢ (𝑤 ∈ (𝐵𝑃𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)) |
4 | 3 | adantl 481 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)) |
5 | 4 | simp3d 1142 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤 ∈ ℝ*) |
6 | simplr 765 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑊𝐵) | |
7 | 2 | simprbi 496 | . . . . . . 7 ⊢ (𝑤 ∈ (𝐵𝑃𝐶) → (𝐵𝑇𝑤 ∧ 𝑤𝑆𝐶)) |
8 | 7 | adantl 481 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝐵𝑇𝑤 ∧ 𝑤𝑆𝐶)) |
9 | 8 | simpld 494 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵𝑇𝑤) |
10 | simpll 763 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴 ∈ ℝ*) | |
11 | 4 | simp1d 1140 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵 ∈ ℝ*) |
12 | ixxss1.3 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵 ∧ 𝐵𝑇𝑤) → 𝐴𝑅𝑤)) | |
13 | 10, 11, 5, 12 | syl3anc 1369 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → ((𝐴𝑊𝐵 ∧ 𝐵𝑇𝑤) → 𝐴𝑅𝑤)) |
14 | 6, 9, 13 | mp2and 695 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑅𝑤) |
15 | 8 | simprd 495 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤𝑆𝐶) |
16 | 4 | simp2d 1141 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐶 ∈ ℝ*) |
17 | ixx.1 | . . . . . 6 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
18 | 17 | elixx1 13070 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐶))) |
19 | 10, 16, 18 | syl2anc 583 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐶))) |
20 | 5, 14, 15, 19 | mpbir3and 1340 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤 ∈ (𝐴𝑂𝐶)) |
21 | 20 | ex 412 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) → (𝑤 ∈ (𝐵𝑃𝐶) → 𝑤 ∈ (𝐴𝑂𝐶))) |
22 | 21 | ssrdv 3931 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) → (𝐵𝑃𝐶) ⊆ (𝐴𝑂𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 {crab 3069 ⊆ wss 3891 class class class wbr 5078 (class class class)co 7268 ∈ cmpo 7270 ℝ*cxr 10992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-xr 10997 |
This theorem is referenced by: iooss1 13096 limsupgord 15162 pnfnei 22352 dvfsumrlimge0 25175 dvfsumrlim2 25177 tanord1 25674 rlimcnp 26096 rlimcnp2 26097 dchrisum0lem2a 26646 pntleml 26740 pnt 26743 liminfgord 43249 |
Copyright terms: Public domain | W3C validator |