![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixxss1 | Structured version Visualization version GIF version |
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
ixxss1.2 | ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑆𝑦)}) |
ixxss1.3 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵 ∧ 𝐵𝑇𝑤) → 𝐴𝑅𝑤)) |
Ref | Expression |
---|---|
ixxss1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) → (𝐵𝑃𝐶) ⊆ (𝐴𝑂𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixxss1.2 | . . . . . . . 8 ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑆𝑦)}) | |
2 | 1 | elixx3g 13385 | . . . . . . 7 ⊢ (𝑤 ∈ (𝐵𝑃𝐶) ↔ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐵𝑇𝑤 ∧ 𝑤𝑆𝐶))) |
3 | 2 | simplbi 496 | . . . . . 6 ⊢ (𝑤 ∈ (𝐵𝑃𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)) |
4 | 3 | adantl 480 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)) |
5 | 4 | simp3d 1141 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤 ∈ ℝ*) |
6 | simplr 767 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑊𝐵) | |
7 | 2 | simprbi 495 | . . . . . . 7 ⊢ (𝑤 ∈ (𝐵𝑃𝐶) → (𝐵𝑇𝑤 ∧ 𝑤𝑆𝐶)) |
8 | 7 | adantl 480 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝐵𝑇𝑤 ∧ 𝑤𝑆𝐶)) |
9 | 8 | simpld 493 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵𝑇𝑤) |
10 | simpll 765 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴 ∈ ℝ*) | |
11 | 4 | simp1d 1139 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵 ∈ ℝ*) |
12 | ixxss1.3 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵 ∧ 𝐵𝑇𝑤) → 𝐴𝑅𝑤)) | |
13 | 10, 11, 5, 12 | syl3anc 1368 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → ((𝐴𝑊𝐵 ∧ 𝐵𝑇𝑤) → 𝐴𝑅𝑤)) |
14 | 6, 9, 13 | mp2and 697 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑅𝑤) |
15 | 8 | simprd 494 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤𝑆𝐶) |
16 | 4 | simp2d 1140 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐶 ∈ ℝ*) |
17 | ixx.1 | . . . . . 6 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
18 | 17 | elixx1 13381 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐶))) |
19 | 10, 16, 18 | syl2anc 582 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐶))) |
20 | 5, 14, 15, 19 | mpbir3and 1339 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤 ∈ (𝐴𝑂𝐶)) |
21 | 20 | ex 411 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) → (𝑤 ∈ (𝐵𝑃𝐶) → 𝑤 ∈ (𝐴𝑂𝐶))) |
22 | 21 | ssrdv 3984 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) → (𝐵𝑃𝐶) ⊆ (𝐴𝑂𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 {crab 3419 ⊆ wss 3946 class class class wbr 5145 (class class class)co 7416 ∈ cmpo 7418 ℝ*cxr 11288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7995 df-2nd 7996 df-xr 11293 |
This theorem is referenced by: iooss1 13407 limsupgord 15469 pnfnei 23212 dvfsumrlimge0 26053 dvfsumrlim2 26055 tanord1 26561 rlimcnp 26990 rlimcnp2 26991 dchrisum0lem2a 27543 pntleml 27637 pnt 27640 liminfgord 45411 |
Copyright terms: Public domain | W3C validator |