MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxss1 Structured version   Visualization version   GIF version

Theorem ixxss1 13331
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxss1.2 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑆𝑦)})
ixxss1.3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))
Assertion
Ref Expression
ixxss1 ((𝐴 ∈ ℝ*𝐴𝑊𝐵) → (𝐵𝑃𝐶) ⊆ (𝐴𝑂𝐶))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐶,𝑥,𝑦,𝑧   𝑤,𝑂   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑃   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑤,𝑊
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   𝑅(𝑤)   𝑆(𝑤)   𝑇(𝑤)   𝑂(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem ixxss1
StepHypRef Expression
1 ixxss1.2 . . . . . . . 8 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑆𝑦)})
21elixx3g 13326 . . . . . . 7 (𝑤 ∈ (𝐵𝑃𝐶) ↔ ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐵𝑇𝑤𝑤𝑆𝐶)))
32simplbi 497 . . . . . 6 (𝑤 ∈ (𝐵𝑃𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ*))
43adantl 481 . . . . 5 (((𝐴 ∈ ℝ*𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ*))
54simp3d 1144 . . . 4 (((𝐴 ∈ ℝ*𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤 ∈ ℝ*)
6 simplr 768 . . . . 5 (((𝐴 ∈ ℝ*𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑊𝐵)
72simprbi 496 . . . . . . 7 (𝑤 ∈ (𝐵𝑃𝐶) → (𝐵𝑇𝑤𝑤𝑆𝐶))
87adantl 481 . . . . . 6 (((𝐴 ∈ ℝ*𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝐵𝑇𝑤𝑤𝑆𝐶))
98simpld 494 . . . . 5 (((𝐴 ∈ ℝ*𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵𝑇𝑤)
10 simpll 766 . . . . . 6 (((𝐴 ∈ ℝ*𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴 ∈ ℝ*)
114simp1d 1142 . . . . . 6 (((𝐴 ∈ ℝ*𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵 ∈ ℝ*)
12 ixxss1.3 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))
1310, 11, 5, 12syl3anc 1373 . . . . 5 (((𝐴 ∈ ℝ*𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))
146, 9, 13mp2and 699 . . . 4 (((𝐴 ∈ ℝ*𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑅𝑤)
158simprd 495 . . . 4 (((𝐴 ∈ ℝ*𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤𝑆𝐶)
164simp2d 1143 . . . . 5 (((𝐴 ∈ ℝ*𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐶 ∈ ℝ*)
17 ixx.1 . . . . . 6 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
1817elixx1 13322 . . . . 5 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐶)))
1910, 16, 18syl2anc 584 . . . 4 (((𝐴 ∈ ℝ*𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝑤 ∈ (𝐴𝑂𝐶) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐶)))
205, 14, 15, 19mpbir3and 1343 . . 3 (((𝐴 ∈ ℝ*𝐴𝑊𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤 ∈ (𝐴𝑂𝐶))
2120ex 412 . 2 ((𝐴 ∈ ℝ*𝐴𝑊𝐵) → (𝑤 ∈ (𝐵𝑃𝐶) → 𝑤 ∈ (𝐴𝑂𝐶)))
2221ssrdv 3955 1 ((𝐴 ∈ ℝ*𝐴𝑊𝐵) → (𝐵𝑃𝐶) ⊆ (𝐴𝑂𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3408  wss 3917   class class class wbr 5110  (class class class)co 7390  cmpo 7392  *cxr 11214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-xr 11219
This theorem is referenced by:  iooss1  13348  limsupgord  15445  pnfnei  23114  dvfsumrlimge0  25944  dvfsumrlim2  25946  tanord1  26453  rlimcnp  26882  rlimcnp2  26883  dchrisum0lem2a  27435  pntleml  27529  pnt  27532  liminfgord  45759
  Copyright terms: Public domain W3C validator