MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqcld Structured version   Visualization version   GIF version

Theorem kqcld 23673
Description: The topological indistinguishability map is a closed map. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqcld ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹𝑈) ∈ (Clsd‘(KQ‘𝐽)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem kqcld
StepHypRef Expression
1 imassrn 6058 . . . 4 (𝐹𝑈) ⊆ ran 𝐹
21a1i 11 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹𝑈) ⊆ ran 𝐹)
3 kqval.2 . . . . 5 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
43kqcldsat 23671 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ (𝐹𝑈)) = 𝑈)
5 simpr 484 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ∈ (Clsd‘𝐽))
64, 5eqeltrd 2834 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ (𝐹𝑈)) ∈ (Clsd‘𝐽))
73kqffn 23663 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
8 dffn4 6796 . . . . . 6 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
97, 8sylib 218 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐹:𝑋onto→ran 𝐹)
10 qtopcld 23651 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto→ran 𝐹) → ((𝐹𝑈) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝐹𝑈) ⊆ ran 𝐹 ∧ (𝐹 “ (𝐹𝑈)) ∈ (Clsd‘𝐽))))
119, 10mpdan 687 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → ((𝐹𝑈) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝐹𝑈) ⊆ ran 𝐹 ∧ (𝐹 “ (𝐹𝑈)) ∈ (Clsd‘𝐽))))
1211adantr 480 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → ((𝐹𝑈) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝐹𝑈) ⊆ ran 𝐹 ∧ (𝐹 “ (𝐹𝑈)) ∈ (Clsd‘𝐽))))
132, 6, 12mpbir2and 713 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹𝑈) ∈ (Clsd‘(𝐽 qTop 𝐹)))
143kqval 23664 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
1514adantr 480 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
1615fveq2d 6880 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (Clsd‘(KQ‘𝐽)) = (Clsd‘(𝐽 qTop 𝐹)))
1713, 16eleqtrrd 2837 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹𝑈) ∈ (Clsd‘(KQ‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {crab 3415  wss 3926  cmpt 5201  ccnv 5653  ran crn 5655  cima 5657   Fn wfn 6526  ontowfo 6529  cfv 6531  (class class class)co 7405   qTop cqtop 17517  TopOnctopon 22848  Clsdccld 22954  KQckq 23631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-qtop 17521  df-top 22832  df-topon 22849  df-cld 22957  df-kq 23632
This theorem is referenced by:  kqreglem1  23679  kqnrmlem1  23681  kqnrmlem2  23682
  Copyright terms: Public domain W3C validator