![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqcld | Structured version Visualization version GIF version |
Description: The topological indistinguishability map is a closed map. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
Ref | Expression |
---|---|
kqcld | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑈) ∈ (Clsd‘(KQ‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 6100 | . . . 4 ⊢ (𝐹 “ 𝑈) ⊆ ran 𝐹 | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑈) ⊆ ran 𝐹) |
3 | kqval.2 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
4 | 3 | kqcldsat 23762 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (◡𝐹 “ (𝐹 “ 𝑈)) = 𝑈) |
5 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ∈ (Clsd‘𝐽)) | |
6 | 4, 5 | eqeltrd 2844 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (◡𝐹 “ (𝐹 “ 𝑈)) ∈ (Clsd‘𝐽)) |
7 | 3 | kqffn 23754 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
8 | dffn4 6840 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | |
9 | 7, 8 | sylib 218 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹:𝑋–onto→ran 𝐹) |
10 | qtopcld 23742 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→ran 𝐹) → ((𝐹 “ 𝑈) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝐹 “ 𝑈) ⊆ ran 𝐹 ∧ (◡𝐹 “ (𝐹 “ 𝑈)) ∈ (Clsd‘𝐽)))) | |
11 | 9, 10 | mpdan 686 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ((𝐹 “ 𝑈) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝐹 “ 𝑈) ⊆ ran 𝐹 ∧ (◡𝐹 “ (𝐹 “ 𝑈)) ∈ (Clsd‘𝐽)))) |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → ((𝐹 “ 𝑈) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝐹 “ 𝑈) ⊆ ran 𝐹 ∧ (◡𝐹 “ (𝐹 “ 𝑈)) ∈ (Clsd‘𝐽)))) |
13 | 2, 6, 12 | mpbir2and 712 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑈) ∈ (Clsd‘(𝐽 qTop 𝐹))) |
14 | 3 | kqval 23755 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
15 | 14 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
16 | 15 | fveq2d 6924 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (Clsd‘(KQ‘𝐽)) = (Clsd‘(𝐽 qTop 𝐹))) |
17 | 13, 16 | eleqtrrd 2847 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑈) ∈ (Clsd‘(KQ‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ⊆ wss 3976 ↦ cmpt 5249 ◡ccnv 5699 ran crn 5701 “ cima 5703 Fn wfn 6568 –onto→wfo 6571 ‘cfv 6573 (class class class)co 7448 qTop cqtop 17563 TopOnctopon 22937 Clsdccld 23045 KQckq 23722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-qtop 17567 df-top 22921 df-topon 22938 df-cld 23048 df-kq 23723 |
This theorem is referenced by: kqreglem1 23770 kqnrmlem1 23772 kqnrmlem2 23773 |
Copyright terms: Public domain | W3C validator |