MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqcld Structured version   Visualization version   GIF version

Theorem kqcld 23683
Description: The topological indistinguishability map is a closed map. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqcld ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹𝑈) ∈ (Clsd‘(KQ‘𝐽)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem kqcld
StepHypRef Expression
1 imassrn 6075 . . . 4 (𝐹𝑈) ⊆ ran 𝐹
21a1i 11 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹𝑈) ⊆ ran 𝐹)
3 kqval.2 . . . . 5 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
43kqcldsat 23681 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ (𝐹𝑈)) = 𝑈)
5 simpr 483 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ∈ (Clsd‘𝐽))
64, 5eqeltrd 2825 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ (𝐹𝑈)) ∈ (Clsd‘𝐽))
73kqffn 23673 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
8 dffn4 6816 . . . . . 6 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
97, 8sylib 217 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐹:𝑋onto→ran 𝐹)
10 qtopcld 23661 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto→ran 𝐹) → ((𝐹𝑈) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝐹𝑈) ⊆ ran 𝐹 ∧ (𝐹 “ (𝐹𝑈)) ∈ (Clsd‘𝐽))))
119, 10mpdan 685 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → ((𝐹𝑈) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝐹𝑈) ⊆ ran 𝐹 ∧ (𝐹 “ (𝐹𝑈)) ∈ (Clsd‘𝐽))))
1211adantr 479 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → ((𝐹𝑈) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝐹𝑈) ⊆ ran 𝐹 ∧ (𝐹 “ (𝐹𝑈)) ∈ (Clsd‘𝐽))))
132, 6, 12mpbir2and 711 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹𝑈) ∈ (Clsd‘(𝐽 qTop 𝐹)))
143kqval 23674 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
1514adantr 479 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
1615fveq2d 6900 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (Clsd‘(KQ‘𝐽)) = (Clsd‘(𝐽 qTop 𝐹)))
1713, 16eleqtrrd 2828 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹𝑈) ∈ (Clsd‘(KQ‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  {crab 3418  wss 3944  cmpt 5232  ccnv 5677  ran crn 5679  cima 5681   Fn wfn 6544  ontowfo 6547  cfv 6549  (class class class)co 7419   qTop cqtop 17488  TopOnctopon 22856  Clsdccld 22964  KQckq 23641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-qtop 17492  df-top 22840  df-topon 22857  df-cld 22967  df-kq 23642
This theorem is referenced by:  kqreglem1  23689  kqnrmlem1  23691  kqnrmlem2  23692
  Copyright terms: Public domain W3C validator