MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t0kq Structured version   Visualization version   GIF version

Theorem t0kq 23842
Description: A topological space is T0 iff the quotient map is a homeomorphism onto the space's Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
t0kq.1 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
t0kq (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹 ∈ (𝐽Homeo(KQ‘𝐽))))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem t0kq
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐽 ∈ (TopOn‘𝑋))
2 t0kq.1 . . . . . 6 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
32ist0-4 23753 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹:𝑋1-1→V))
43biimpa 476 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐹:𝑋1-1→V)
51, 4qtopf1 23840 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐹 ∈ (𝐽Homeo(𝐽 qTop 𝐹)))
62kqval 23750 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
76adantr 480 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
87oveq2d 7447 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → (𝐽Homeo(KQ‘𝐽)) = (𝐽Homeo(𝐽 qTop 𝐹)))
95, 8eleqtrrd 2842 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐹 ∈ (𝐽Homeo(KQ‘𝐽)))
10 hmphi 23801 . . . . 5 (𝐹 ∈ (𝐽Homeo(KQ‘𝐽)) → 𝐽 ≃ (KQ‘𝐽))
11 hmphsym 23806 . . . . 5 (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽)
1210, 11syl 17 . . . 4 (𝐹 ∈ (𝐽Homeo(KQ‘𝐽)) → (KQ‘𝐽) ≃ 𝐽)
132kqt0lem 23760 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ Kol2)
14 t0hmph 23814 . . . 4 ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ Kol2 → 𝐽 ∈ Kol2))
1512, 13, 14syl2im 40 . . 3 (𝐹 ∈ (𝐽Homeo(KQ‘𝐽)) → (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Kol2))
1615impcom 407 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (𝐽Homeo(KQ‘𝐽))) → 𝐽 ∈ Kol2)
179, 16impbida 801 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹 ∈ (𝐽Homeo(KQ‘𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478   class class class wbr 5148  cmpt 5231  1-1wf1 6560  cfv 6563  (class class class)co 7431   qTop cqtop 17550  TopOnctopon 22932  Kol2ct0 23330  KQckq 23717  Homeochmeo 23777  chmph 23778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-1o 8505  df-map 8867  df-qtop 17554  df-top 22916  df-topon 22933  df-cn 23251  df-t0 23337  df-kq 23718  df-hmeo 23779  df-hmph 23780
This theorem is referenced by:  kqhmph  23843
  Copyright terms: Public domain W3C validator