![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > t0kq | Structured version Visualization version GIF version |
Description: A topological space is T0 iff the quotient map is a homeomorphism onto the space's Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
t0kq.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
Ref | Expression |
---|---|
t0kq | ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹 ∈ (𝐽Homeo(KQ‘𝐽)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐽 ∈ (TopOn‘𝑋)) | |
2 | t0kq.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
3 | 2 | ist0-4 23716 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹:𝑋–1-1→V)) |
4 | 3 | biimpa 475 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐹:𝑋–1-1→V) |
5 | 1, 4 | qtopf1 23803 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐹 ∈ (𝐽Homeo(𝐽 qTop 𝐹))) |
6 | 2 | kqval 23713 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
7 | 6 | adantr 479 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
8 | 7 | oveq2d 7439 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → (𝐽Homeo(KQ‘𝐽)) = (𝐽Homeo(𝐽 qTop 𝐹))) |
9 | 5, 8 | eleqtrrd 2828 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐹 ∈ (𝐽Homeo(KQ‘𝐽))) |
10 | hmphi 23764 | . . . . 5 ⊢ (𝐹 ∈ (𝐽Homeo(KQ‘𝐽)) → 𝐽 ≃ (KQ‘𝐽)) | |
11 | hmphsym 23769 | . . . . 5 ⊢ (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo(KQ‘𝐽)) → (KQ‘𝐽) ≃ 𝐽) |
13 | 2 | kqt0lem 23723 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ Kol2) |
14 | t0hmph 23777 | . . . 4 ⊢ ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ Kol2 → 𝐽 ∈ Kol2)) | |
15 | 12, 13, 14 | syl2im 40 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo(KQ‘𝐽)) → (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Kol2)) |
16 | 15 | impcom 406 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (𝐽Homeo(KQ‘𝐽))) → 𝐽 ∈ Kol2) |
17 | 9, 16 | impbida 799 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹 ∈ (𝐽Homeo(KQ‘𝐽)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3418 Vcvv 3461 class class class wbr 5152 ↦ cmpt 5235 –1-1→wf1 6550 ‘cfv 6553 (class class class)co 7423 qTop cqtop 17513 TopOnctopon 22895 Kol2ct0 23293 KQckq 23680 Homeochmeo 23740 ≃ chmph 23741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7426 df-oprab 7427 df-mpo 7428 df-1st 8002 df-2nd 8003 df-1o 8495 df-map 8856 df-qtop 17517 df-top 22879 df-topon 22896 df-cn 23214 df-t0 23300 df-kq 23681 df-hmeo 23742 df-hmph 23743 |
This theorem is referenced by: kqhmph 23806 |
Copyright terms: Public domain | W3C validator |