MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t0kq Structured version   Visualization version   GIF version

Theorem t0kq 22720
Description: A topological space is T0 iff the quotient map is a homeomorphism onto the space's Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
t0kq.1 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
t0kq (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹 ∈ (𝐽Homeo(KQ‘𝐽))))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem t0kq
StepHypRef Expression
1 simpl 486 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐽 ∈ (TopOn‘𝑋))
2 t0kq.1 . . . . . 6 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
32ist0-4 22631 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹:𝑋1-1→V))
43biimpa 480 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐹:𝑋1-1→V)
51, 4qtopf1 22718 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐹 ∈ (𝐽Homeo(𝐽 qTop 𝐹)))
62kqval 22628 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
76adantr 484 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
87oveq2d 7234 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → (𝐽Homeo(KQ‘𝐽)) = (𝐽Homeo(𝐽 qTop 𝐹)))
95, 8eleqtrrd 2841 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐹 ∈ (𝐽Homeo(KQ‘𝐽)))
10 hmphi 22679 . . . . 5 (𝐹 ∈ (𝐽Homeo(KQ‘𝐽)) → 𝐽 ≃ (KQ‘𝐽))
11 hmphsym 22684 . . . . 5 (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽)
1210, 11syl 17 . . . 4 (𝐹 ∈ (𝐽Homeo(KQ‘𝐽)) → (KQ‘𝐽) ≃ 𝐽)
132kqt0lem 22638 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ Kol2)
14 t0hmph 22692 . . . 4 ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ Kol2 → 𝐽 ∈ Kol2))
1512, 13, 14syl2im 40 . . 3 (𝐹 ∈ (𝐽Homeo(KQ‘𝐽)) → (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Kol2))
1615impcom 411 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (𝐽Homeo(KQ‘𝐽))) → 𝐽 ∈ Kol2)
179, 16impbida 801 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹 ∈ (𝐽Homeo(KQ‘𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  {crab 3065  Vcvv 3413   class class class wbr 5058  cmpt 5140  1-1wf1 6382  cfv 6385  (class class class)co 7218   qTop cqtop 17013  TopOnctopon 21812  Kol2ct0 22208  KQckq 22595  Homeochmeo 22655  chmph 22656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5184  ax-sep 5197  ax-nul 5204  ax-pow 5263  ax-pr 5327  ax-un 7528
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3415  df-sbc 3700  df-csb 3817  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-nul 4243  df-if 4445  df-pw 4520  df-sn 4547  df-pr 4549  df-op 4553  df-uni 4825  df-iun 4911  df-br 5059  df-opab 5121  df-mpt 5141  df-id 5460  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-ima 5569  df-suc 6224  df-iota 6343  df-fun 6387  df-fn 6388  df-f 6389  df-f1 6390  df-fo 6391  df-f1o 6392  df-fv 6393  df-ov 7221  df-oprab 7222  df-mpo 7223  df-1st 7766  df-2nd 7767  df-1o 8207  df-map 8515  df-qtop 17017  df-top 21796  df-topon 21813  df-cn 22129  df-t0 22215  df-kq 22596  df-hmeo 22657  df-hmph 22658
This theorem is referenced by:  kqhmph  22721
  Copyright terms: Public domain W3C validator