| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > t0kq | Structured version Visualization version GIF version | ||
| Description: A topological space is T0 iff the quotient map is a homeomorphism onto the space's Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| t0kq.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
| Ref | Expression |
|---|---|
| t0kq | ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹 ∈ (𝐽Homeo(KQ‘𝐽)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐽 ∈ (TopOn‘𝑋)) | |
| 2 | t0kq.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
| 3 | 2 | ist0-4 23644 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹:𝑋–1-1→V)) |
| 4 | 3 | biimpa 476 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐹:𝑋–1-1→V) |
| 5 | 1, 4 | qtopf1 23731 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐹 ∈ (𝐽Homeo(𝐽 qTop 𝐹))) |
| 6 | 2 | kqval 23641 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
| 8 | 7 | oveq2d 7362 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → (𝐽Homeo(KQ‘𝐽)) = (𝐽Homeo(𝐽 qTop 𝐹))) |
| 9 | 5, 8 | eleqtrrd 2834 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐹 ∈ (𝐽Homeo(KQ‘𝐽))) |
| 10 | hmphi 23692 | . . . . 5 ⊢ (𝐹 ∈ (𝐽Homeo(KQ‘𝐽)) → 𝐽 ≃ (KQ‘𝐽)) | |
| 11 | hmphsym 23697 | . . . . 5 ⊢ (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo(KQ‘𝐽)) → (KQ‘𝐽) ≃ 𝐽) |
| 13 | 2 | kqt0lem 23651 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ Kol2) |
| 14 | t0hmph 23705 | . . . 4 ⊢ ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ Kol2 → 𝐽 ∈ Kol2)) | |
| 15 | 12, 13, 14 | syl2im 40 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo(KQ‘𝐽)) → (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Kol2)) |
| 16 | 15 | impcom 407 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (𝐽Homeo(KQ‘𝐽))) → 𝐽 ∈ Kol2) |
| 17 | 9, 16 | impbida 800 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹 ∈ (𝐽Homeo(KQ‘𝐽)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 class class class wbr 5089 ↦ cmpt 5170 –1-1→wf1 6478 ‘cfv 6481 (class class class)co 7346 qTop cqtop 17407 TopOnctopon 22825 Kol2ct0 23221 KQckq 23608 Homeochmeo 23668 ≃ chmph 23669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-1o 8385 df-map 8752 df-qtop 17411 df-top 22809 df-topon 22826 df-cn 23142 df-t0 23228 df-kq 23609 df-hmeo 23670 df-hmph 23671 |
| This theorem is referenced by: kqhmph 23734 |
| Copyright terms: Public domain | W3C validator |