![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > t0kq | Structured version Visualization version GIF version |
Description: A topological space is T0 iff the quotient map is a homeomorphism onto the space's Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
t0kq.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
Ref | Expression |
---|---|
t0kq | ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹 ∈ (𝐽Homeo(KQ‘𝐽)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐽 ∈ (TopOn‘𝑋)) | |
2 | t0kq.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
3 | 2 | ist0-4 23758 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹:𝑋–1-1→V)) |
4 | 3 | biimpa 476 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐹:𝑋–1-1→V) |
5 | 1, 4 | qtopf1 23845 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐹 ∈ (𝐽Homeo(𝐽 qTop 𝐹))) |
6 | 2 | kqval 23755 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
8 | 7 | oveq2d 7464 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → (𝐽Homeo(KQ‘𝐽)) = (𝐽Homeo(𝐽 qTop 𝐹))) |
9 | 5, 8 | eleqtrrd 2847 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Kol2) → 𝐹 ∈ (𝐽Homeo(KQ‘𝐽))) |
10 | hmphi 23806 | . . . . 5 ⊢ (𝐹 ∈ (𝐽Homeo(KQ‘𝐽)) → 𝐽 ≃ (KQ‘𝐽)) | |
11 | hmphsym 23811 | . . . . 5 ⊢ (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo(KQ‘𝐽)) → (KQ‘𝐽) ≃ 𝐽) |
13 | 2 | kqt0lem 23765 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ Kol2) |
14 | t0hmph 23819 | . . . 4 ⊢ ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ Kol2 → 𝐽 ∈ Kol2)) | |
15 | 12, 13, 14 | syl2im 40 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo(KQ‘𝐽)) → (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Kol2)) |
16 | 15 | impcom 407 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (𝐽Homeo(KQ‘𝐽))) → 𝐽 ∈ Kol2) |
17 | 9, 16 | impbida 800 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹 ∈ (𝐽Homeo(KQ‘𝐽)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 class class class wbr 5166 ↦ cmpt 5249 –1-1→wf1 6570 ‘cfv 6573 (class class class)co 7448 qTop cqtop 17563 TopOnctopon 22937 Kol2ct0 23335 KQckq 23722 Homeochmeo 23782 ≃ chmph 23783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-1o 8522 df-map 8886 df-qtop 17567 df-top 22921 df-topon 22938 df-cn 23256 df-t0 23342 df-kq 23723 df-hmeo 23784 df-hmph 23785 |
This theorem is referenced by: kqhmph 23848 |
Copyright terms: Public domain | W3C validator |